In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries

被引:30
作者
Zheng, Shujun [1 ]
Chen, Yuyang [1 ]
Chen, Kai [1 ]
Yang, Shengyuan [1 ]
Bagherzadeh, Roohollah [3 ]
Miao, Yue-E [1 ]
Liu, Tianxi [1 ,2 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Jiangnan Univ, Minist Educ, Sch Chem & Mat Engn, Key Lab Synthet & Biol Colloids, Wuxi 214122, Jiangsu, Peoples R China
[3] Amirkabir Univ Technol, Sch Adv Mat & Proc, Inst Adv Text Mat & Technol ATMT, Adv Fibrous Mat Lab, Tehran, Iran
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
POLYMER ELECTROLYTES; HIGH-VOLTAGE;
D O I
10.1039/d2ta02229j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polyether-based composite electrolytes exhibit great promise to bridge the gap between solid polymer electrolytes (SPEs) and high-energy solid-state Li metal batteries. However, the practical application of polyether electrolytes is still hindered by their poor ionic conductivity and low oxidation potential. Herein, a topochemistry-driven polyether-based composite electrolyte is constructed in situ, by the cation polymerization of 1,3-dioxolane (DOL) to obtain poly(1,3-dioxolane) (PDOL) in a three-dimensional (3D) La0.56Li0.33TiO3 nanofiber (LLTO NF) skeleton, with a chemically stable interface and strong-coupled ionic conductivity. The spontaneous polymerization reaction results in the formation of a unique polymeric CH2-CH2-O-CH2-O- amorphous structure of PDOL, with a wide operation voltage (5.5 V) and an intimate interface within the LLTO NF skeleton. The continuous one-dimensional (1D) LLTO NFs and polymer chains act as bi-phase ion transport channels, enabling an improved conduction of 6.6 x 10(-4) S cm(-1). Furthermore, the LiF and Al-complex films derived from the solid electrolyte interphase (SEI) can redistribute the ion flux and ensure the structural stability of the Li anode. Thus, the polyether-based composite electrolyte achieves a remarkable cyclability (over 900 h at 0.1 mA cm(-2)) and satisfactory capacity retention (70.7% over 350 cycles). This polymer composite electrolyte design offers a unique perspective for linking in situ topochemistry design with safe and high-energy solid batteries.
引用
收藏
页码:19641 / 19648
页数:8
相关论文
共 50 条
  • [1] In situ construction of ether-based composite electrolyte with stable electrode interphase for high-performance solid state lithium metal battery
    Zhang, Yixiao
    Ye, Xue
    Fu, Han
    Zhong, Yu
    Wang, Xiuli
    Gu, Changdong
    Tu, Jiangping
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [2] Polyether-based composite solid-state electrolyte to realize stable high-rate cycling for high-voltage lithium metal batteries at room temperature
    Li, Xinhao
    Wang, Chen
    Nan, Wenzheng
    Peng, Sikan
    Liu, Jin
    Yan, Shaojiu
    MATERIALS TODAY CHEMISTRY, 2024, 40
  • [3] The Regulation of Solid Electrolyte Interphase on Composite Lithium Anodes in Solid-State Batteries
    Wang, Zi-You
    Zhao, Chen-Zi
    Yao, Nan
    Lu, Yang
    Xue, Zhou-Qing
    Huang, Xue-Yan
    Xu, Pan
    Huang, Wen-Ze
    Wang, Zi-Xuan
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (02)
  • [4] Construction of covalent electrode/solid electrolyte interface for stable flexible solid-state lithium batteries
    Zou, Junlong
    Wang, Linlin
    Zhang, Jun
    Sun, Qiyue
    Wang, Yongyin
    Zheng, Mingtao
    Xiao, Yong
    Hu, Hang
    Liu, Yingliang
    Liang, Yeru
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [5] Construction of stable solid electrolyte interphase on lithium anode for long-cycling solid-state lithium?sulfur batteries
    Chen, Shuang
    Ding, Bing
    Lin, Qingyang
    Shi, Yuanyuan
    Hu, Ben
    Li, Zhiwei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 880
  • [6] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Wang, Qinglei
    Dong, Tiantian
    Zhou, Qian
    Cui, Zili
    Shangguan, Xuehui
    Lu, Chenglong
    Lv, Zhaolin
    Chen, Kai
    Huang, Lang
    Zhang, Huanrui
    Cui, Guanglei
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (05) : 934 - 942
  • [7] Composite Solid-State Electrolyte with Vertical Ion Transport Channels for All-Solid-State Lithium Metal Batteries
    Sun, Hao
    Cheng, Guangzeng
    Wang, Haoran
    Gao, Yanan
    Wu, Jingyi
    SMALL, 2025, 21 (03)
  • [8] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China Chemistry, 2022, 65 : 934 - 942
  • [9] Particles in composite polymer electrolyte for solid-state lithium batteries: A review
    Meng, Nan
    Zhu, Xiaogang
    Lian, Fang
    PARTICUOLOGY, 2022, 60 : 14 - 36
  • [10] Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries
    Li, Chenghan
    Zhou, Shi
    Dai, Lijie
    Zhou, Xuanyi
    Zhang, Biao
    Chen, Liwen
    Zeng, Tao
    Liu, Yating
    Tang, Yongfu
    Jiang, Jie
    Huang, Jianyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24661 - 24669