Numerical solution of hyperelastic membranes by energy minimization

被引:23
作者
Bouzidi, R [1 ]
Le van, A [1 ]
机构
[1] Univ Nantes, Fac Sci, Civil Engn Lab, F-44322 Nantes 3, France
关键词
energy minimization; triangular finite element; circular membrane; rectangular membrane; parabolic antenna;
D O I
10.1016/j.compstruc.2004.03.057
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a numerical approach is presented for solving problems of finitely deformed membrane structures made of compressible hyperelastic material and subjected to external pressure loadings. Instead of following the usual finite element procedure that requires computing the material tangent stiffness and the geometric stiffness, here we solve the membrane structures by directly minimizing the total potential energy, which proves to be an attractive alternative for inflatable structures. The numerical computations are performed over two simple geometries-the circular and the rectangular membranes-and over a more complex structure-a parabolic antenna-using the Saint-Venant Kirchhoff and neo-Hookean models. Whenever available, analytical or semi-analytic solutions are used to validate the finite element results. (C) 2004 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
引用
收藏
页码:1961 / 1969
页数:9
相关论文
共 11 条
[1]  
Brakke K., 1992, EXP MATH, V1, P141, DOI DOI 10.1080/10586458.1992.10504253
[2]  
Campbell JD., 1956, Q J MECH APPL MATH, V9, P84
[3]  
Ciarlet P.G., 1988, Mathematical Elasticity Volume I: Three-Dimensional Elasticity, V20
[4]  
FICHTER WB, 1997, 3658NASA LANGL RES C
[5]  
FISCHER D, 1998, J ELASTICITY, V19, P77, DOI DOI 10.1007/BF00041696
[6]  
Fu YB, 2001, Nonlinear elasticity: theory and applications
[7]  
Hencky H., 1915, Zeitschrift fur Mathematik und Physik, V63, P311
[8]  
MARKER DK, 1997, OPT EXP 63, V1, P311
[9]  
NETO EAD, 1995, INT J NUMER METH ENG, V38, P3365
[10]   LARGE DEFORMATION ISOTROPIC ELASTICITY - CORRELATION OF THEORY AND EXPERIMENT FOR INCOMPRESSIBLE RUBBERLIKE SOLIDS [J].
OGDEN, RW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 326 (1567) :565-&