On the nonholonomic variational principle

被引:0
作者
Swaczyna, M [1 ]
机构
[1] Univ Ostrava, Fac Sci, Dept Math, Dubna 70103 22, Russia
来源
GLOBAL ANALYSIS AND APPLIED MATHEMATICS | 2004年 / 729卷
关键词
Lagrangian system; nonholonomic constraints; canonical distribution; constraint ideal; constraint horizontalization and contactization; constraint Lepage equivalent; constraint first variational formula; constraint Euler-Lagrange equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A variational principle for the first order mechanical systems subjected to general nonholonomic constraints is presented, providing the (reduced) nonholonomic motion equations in a form of constraint Euler-Lagrange equations.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 19 条
  • [11] Krupkova O., 1998, P C DIFF GEOM ITS AP, P533
  • [12] KRUPKOVA O, 2002, CONSTRAINT HELMHOLTZ
  • [13] Krupkova O., 1997, LECT NOTES MATH
  • [14] Massa E, 1997, ANN I H POINCARE-PHY, V66, P1
  • [15] A geometric approach to constrained mechanical systems, symmetries and inverse problems
    Morando, P
    Vignolo, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (40): : 8233 - 8245
  • [16] TIME-DEPENDENT LAGRANGIAN SYSTEMS - A GEOMETRIC APPROACH TO THE THEORY OF SYSTEMS WITH CONSTRAINTS
    RANADA, MF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (02) : 748 - 758
  • [17] A GEOMETRICAL FRAMEWORK FOR THE STUDY OF NONHOLONOMIC LAGRANGIAN SYSTEMS
    SARLET, W
    CANTRIJN, F
    SAUNDERS, DJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11): : 3253 - 3268
  • [18] SARLET W, 1996, EXTRACTA MATH, V11, P202
  • [19] A geometrical framework for the study of non-holonomic Lagrangian systems .2.
    Saunders, DJ
    Sarlet, W
    Cantrijn, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 4265 - 4274