Dirichlet process mixture models for single-cell RNA-seq clustering

被引:6
|
作者
Adossa, Nigatu A. [1 ,2 ]
Rytkonen, Kalle T. [1 ,2 ,3 ]
Elo, Laura L. [1 ,2 ,4 ]
机构
[1] Univ Turku, Turku Biosci Ctr, FI-20520 Turku, Finland
[2] Abo Akad Univ, FI-20520 Turku, Finland
[3] Univ Turku, Res Ctr Integrat Physiol & Pharmacol, Inst Biomed, FI-20014 Turku, Finland
[4] Univ Turku, Inst Biomed, FI-20014 Turku, Finland
来源
BIOLOGY OPEN | 2022年 / 11卷 / 04期
基金
芬兰科学院;
关键词
Clustering; Hierarchical Dirichlet process (HDP); Latent Dirichlet allocation (LDA); ScRNA-seq; VARIATIONAL INFERENCE; RECONSTRUCTION;
D O I
10.1242/bio.059001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering of cells based on gene expression is one of the major steps in single-cell RNA-sequencing (scRNA-seq) data analysis. One key challenge in cluster analysis is the unknown number of clusters and, for this issue, there is still no comprehensive solution. To enhance the process of defining meaningful cluster resolution, we compare Bayesian latent Dirichlet allocation (LDA) method to its non-parametric counterpart, hierarchical Dirichlet process (HDP) in the context of clustering scRNA-seq data. A potential main advantage of HDP is that it does not require the number of clusters as an input parameter from the user. While LDA has been used in single-cell data analysis, it has not been compared in detail with HDP. Here, we compare the cell clustering performance of LDA and HDP using four scRNA-seq datasets (immune cells, kidney, pancreas and decidua/placenta), with a specific focus on cluster numbers. Using both intrinsic (DB-index) and extrinsic (ARI) cluster quality measures, we show that the performance of LDA and HDP is dataset dependent. We describe a case where HDP produced a more appropriate clustering compared to the best performer from a series of LDA clusterings with different numbers of clusters. However, we also observed cases where the best performing LDA cluster numbers appropriately capture the main biological features while HDP tended to inflate the number of clusters. Overall, our study highlights the importance of carefully assessing the number of clusters when analyzing scRNA-seq data.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [2] Impact of similarity metrics on single-cell RNA-seq data clustering
    Kim, Taiyun
    Chen, Irene Rui
    Lin, Yingxin
    Wang, Andy Yi-Yang
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2316 - 2326
  • [3] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [4] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [5] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [6] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [7] scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder
    Yu, Bin
    Chen, Chen
    Qi, Ren
    Zheng, Ruiqing
    Skillman-Lawrence, Patrick J.
    Wang, Xiaolin
    Ma, Anjun
    Gu, Haiming
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [8] scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data
    Zile Wang
    Haiyun Wang
    Jianping Zhao
    Chunhou Zheng
    BMC Bioinformatics, 24
  • [9] Variational Inference in Probabilistic Single-cell RNA-seq Models
    Ferreira, Pedro F.
    Carvalho, Alexandra M.
    Vinga, Susana
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2018, 2020, 11925 : 11 - 18
  • [10] CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    Peijie Lin
    Michael Troup
    Joshua W. K. Ho
    Genome Biology, 18