Deep multi-view learning methods: A review

被引:167
作者
Yan, Xiaoqiang [1 ]
Hu, Shizhe [1 ]
Mao, Yiqiao [1 ]
Ye, Yangdong [1 ]
Yu, Hui [2 ]
机构
[1] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450052, Peoples R China
[2] Univ Portsmouth, Sch Creat Technol, Portsmouth PO1 2DJ, Hants, England
关键词
Deep multi-view learning; deep neural networks; representation learning; statistical learning survey; CANONICAL CORRELATION-ANALYSIS; GRAPH NEURAL-NETWORK; INFORMATION BOTTLENECK; ACTION RECOGNITION; VIEW; ENSEMBLE; AUTOENCODER; REDUCTION; MODELS;
D O I
10.1016/j.neucom.2021.03.090
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view learning (MVL) has attracted increasing attention and achieved great practical success by exploiting complementary information of multiple features or modalities. Recently, due to the remarkable performance of deep models, deep MVL has been adopted in many domains, such as machine learning, artificial intelligence and computer vision. This paper presents a comprehensive review on deep MVL from the following two perspectives: MVL methods in deep learning scope and deep MVL extensions of traditional methods. Specifically, we first review the representative MVL methods in the scope of deep learning, such as multi-view auto-encoder, conventional neural networks and deep brief networks. Then, we investigate the advancements of the MVL mechanism when traditional learning methods meet deep learning models, such as deep multi-view canonical correlation analysis, matrix factorization and information bottleneck. Moreover, we also summarize the main applications, widely-used datasets and performance comparison in the domain of deep MVL. Finally, we attempt to identify some open challenges to inform future research directions. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 129
页数:24
相关论文
共 210 条
[41]   Multi-view Face Detection Using Deep Convolutional Neural Networks [J].
Farfade, Sachin Sudhakar ;
Saberian, Mohammad ;
Li, Li-Jia .
ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, :643-650
[42]   Parameter Transfer Deep Neural Network for Single-Modal B-Mode Ultrasound-Based Computer-Aided Diagnosis [J].
Fei, Xiaoyan ;
Shen, Lu ;
Ying, Shihui ;
Cai, Yehua ;
Zhang, Qi ;
Kong, Wentao ;
Zhou, Weijun ;
Shi, Jun .
COGNITIVE COMPUTATION, 2020, 12 (06) :1252-1264
[43]  
Fei Xue, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P11372, DOI 10.1109/CVPR42600.2020.01139
[44]  
Fei-Fei L, 2005, PROC CVPR IEEE, P524
[45]   Convolutional Two-Stream Network Fusion for Video Action Recognition [J].
Feichtenhofer, Christoph ;
Pinz, Axel ;
Zisserman, Andrew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1933-1941
[46]   Cross-modal Retrieval with Correspondence Autoencoder [J].
Feng, Fangxiang ;
Wang, Xiaojie ;
Li, Ruifan .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :7-16
[47]   GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition [J].
Feng, Yifan ;
Zhang, Zizhao ;
Zhao, Xibin ;
Ji, Rongrong ;
Gao, Yue .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :264-272
[48]  
Fern XZ, 2005, SIAM PROC S, P439
[49]  
Gao QX, 2020, AAAI CONF ARTIF INTE, V34, P3938
[50]  
Gao Y, 2007, LECT NOTES COMPUT SC, V4443, P912