Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits

被引:246
作者
Finegan, Donal P. [1 ]
Darcy, Eric [2 ]
Keyser, Matthew [3 ]
Tjaden, Bernhard [1 ]
Heenan, Thomas M. M. [1 ]
Jervis, Rhodri [1 ]
Bailey, Josh J. [1 ]
Malik, Romeo [4 ]
Vo, Nghia T. [5 ]
Magdysyuk, Oxana V. [5 ]
Atwood, Robert [5 ]
Drakopoulos, Michael [5 ]
DiMichiel, Marco [6 ]
Rack, Alexander [6 ]
Hinds, Gareth [7 ]
Brett, Dan J. L. [1 ]
Shearing, Paul R. [1 ]
机构
[1] UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England
[2] NASA, Johnson Space Ctr, Houston, TX 77058 USA
[3] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA
[4] Univ Warwick, Warwick Mfg Grp, Coventry CV4 7AL, W Midlands, England
[5] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
[6] ESRF European Synchrotron, 71 Rue Martyrs, F-38000 Grenoble, France
[7] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
BATTERIES; SEPARATORS; SAFETY; ELECTRODE; OPERANDO;
D O I
10.1039/c7ee00385d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. The cause of unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed.
引用
收藏
页码:1377 / 1388
页数:12
相关论文
共 47 条
[1]  
AAIB, 2015, REP SER INC BOEING B
[2]   Diagnostic examination of thermally abused high-power lithium-ion cells [J].
Abraham, D. P. ;
Roth, E. P. ;
Kostecki, R. ;
McCarthy, K. ;
MacLaren, S. ;
Doughty, D. H. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :648-657
[3]  
[Anonymous], REGULARIZATION METHO
[4]   Safety mechanisms in lithium-ion batteries [J].
Balakrishnan, PG ;
Ramesh, R ;
Kumar, TP .
JOURNAL OF POWER SOURCES, 2006, 155 (02) :401-414
[5]   Data Analysis WorkbeNch (DAWN) [J].
Basham, Mark ;
Filik, Jacob ;
Wharmby, Michael T. ;
Chang, Peter C. Y. ;
El Kassaby, Baha ;
Gerring, Matthew ;
Aishima, Jun ;
Levik, Karl ;
Pulford, Bill C. A. ;
Sikharulidze, Irakli ;
Sneddon, Duncan ;
Webber, Matthew ;
Dhesi, Sarnjeet S. ;
Maccherozzi, Francesco ;
Svensson, Olof ;
Brockhauser, Sandor ;
Naray, Gabor ;
Ashton, Alun W. .
JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 :853-858
[6]   Calculation of the state of safety (SOS) for lithium ion batteries [J].
Cabrera-Castillo, Eliud ;
Niedermeier, Florian ;
Jossen, Andreas .
JOURNAL OF POWER SOURCES, 2016, 324 :509-520
[7]  
Chamary J. Forbes., 2016, WHY ARE SAMSUNGS GAL
[8]   Probing the Roles of Polymeric Separators in Lithium-Ion Battery Capacity Fade at Elevated Temperatures [J].
Chen, Jianchao ;
Yan, Yongda ;
Sun, Tao ;
Qi, Yue ;
Li, Xiaodong .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (09) :A1241-A1246
[9]  
Darcy E., 2016, 18650 CELL BOTTOM VE
[10]  
Darcy E., 2014, ON DEMAND INTERNAL S