Quantum convolutional neural networks for high energy physics data analysis

被引:43
|
作者
Chen, Samuel Yen-Chi [1 ]
Wei, Tzu-Chieh [2 ,3 ]
Zhang, Chao [4 ]
Yu, Haiwang [4 ]
Yoo, Shinjae [1 ]
机构
[1] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Phys Dept, Upton, NY 11973 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 01期
关键词
Number:; -; Acronym:; USDOE; Sponsor: U.S. Department of Energy; SC; Sponsor: Office of Science; DE-SC-0012704; HEP; Sponsor: High Energy Physics; 20-024; LDRD; Sponsor: Laboratory Directed Research and Development;
D O I
10.1103/PhysRevResearch.4.013231
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a quantum convolutional neural network (QCNN) for the classification of high energy physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino Experiment. The proposed quantum architecture demonstrates an advantage of learning faster than the classical convolutional neural networks (CNNs) under a similar number of parameters. In addition to the faster convergence, the QCNN achieves a greater test accuracy compared to CNNs. Based on our results from numerical simulations, it is a promising direction to apply QCNN and other quantum machine learning models to high energy physics and other scientific fields.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Evolving Energy Efficient Convolutional Neural Networks
    Young, Steven R.
    Johnston, J. Travis
    Schuman, Catherine D.
    Devineni, Pravallika
    Kay, Bill
    Rose, Derek C.
    Parsa, Maryam
    Patton, Robert M.
    Potok, Thomas E.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4479 - 4485
  • [42] Data analysis in high energy physics, weird or wonderful
    Mount, Richard P.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVII, 2008, 394 : 57 - 66
  • [43] Energy Propagation in Deep Convolutional Neural Networks
    Wiatowski, Thomas
    Grohs, Philipp
    Boelcskei, Helmut
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 4819 - 4842
  • [44] Using MapReduce for High Energy Physics Data Analysis
    Glaser, Fabian
    Neukirchen, Helmut
    Rings, Thomas
    Grabowski, Jens
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 1271 - 1278
  • [45] Using Hadoop for High Energy Physics Data Analysis
    Huang, Qiulan
    Wei, Zhanchen
    Sun, Gongxing
    Cheng, Yaodong
    Cheng, Zhenjing
    Hu, Qingbao
    BIG SCIENTIFIC DATA MANAGEMENT, 2019, 11473 : 146 - 153
  • [46] Approximation Analysis of Convolutional Neural Networks
    Bao, Chenglong
    Li, Qianxiao
    Shen, Zuowei
    Tai, Cheng
    Wu, Lei
    Xiang, Xueshuang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (03) : 524 - 549
  • [47] Convolutional Neural Networks Learning Respiratory data
    Perna, Diego
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2109 - 2113
  • [48] MisConv: Convolutional Neural Networks for Missing Data
    Likowski, Marcin Przewiez
    Smieja, Marek
    Struski, Lukasz
    Tabor, Jacek
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2917 - 2926
  • [49] Age Analysis with Convolutional Neural Networks
    Perez-Delgado, Maria-Luisa
    Roman-Gallego, Jesus-Angel
    NEW TRENDS IN DISRUPTIVE TECHNOLOGIES, TECH ETHICS AND ARTIFICIAL INTELLIGENCE, DITTET 2023, 2023, 1452 : 28 - 37
  • [50] Efficient quantum state tomography with convolutional neural networks
    Schmale, Tobias
    Reh, Moritz
    Gaerttner, Martin
    NPJ QUANTUM INFORMATION, 2022, 8 (01)