Quantum convolutional neural networks for high energy physics data analysis

被引:43
|
作者
Chen, Samuel Yen-Chi [1 ]
Wei, Tzu-Chieh [2 ,3 ]
Zhang, Chao [4 ]
Yu, Haiwang [4 ]
Yoo, Shinjae [1 ]
机构
[1] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Phys Dept, Upton, NY 11973 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 01期
关键词
Number:; -; Acronym:; USDOE; Sponsor: U.S. Department of Energy; SC; Sponsor: Office of Science; DE-SC-0012704; HEP; Sponsor: High Energy Physics; 20-024; LDRD; Sponsor: Laboratory Directed Research and Development;
D O I
10.1103/PhysRevResearch.4.013231
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a quantum convolutional neural network (QCNN) for the classification of high energy physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino Experiment. The proposed quantum architecture demonstrates an advantage of learning faster than the classical convolutional neural networks (CNNs) under a similar number of parameters. In addition to the faster convergence, the QCNN achieves a greater test accuracy compared to CNNs. Based on our results from numerical simulations, it is a promising direction to apply QCNN and other quantum machine learning models to high energy physics and other scientific fields.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Branching quantum convolutional neural networks
    MacCormack, Ian
    Delaney, Conor
    Galda, Alexey
    Aggarwal, Nidhi
    Narang, Prineha
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [12] Quantum Convolution for Convolutional Neural Networks
    Bourahla, Mustapha
    QUANTUM COMPUTING: APPLICATIONS AND CHALLENGES, QSAC 2023, 2024, 2 : 179 - 193
  • [13] Quantum Dilated Convolutional Neural Networks
    Chen, Yixiong
    IEEE ACCESS, 2022, 10 : 20240 - 20246
  • [14] Quantum Graph Convolutional Neural Networks
    Zheng, Jin
    Gao, Qing
    Lu, Yanxuan
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6335 - 6340
  • [15] Cryptosystem for Grid Data Based on Quantum Convolutional Neural Networks and Quantum Chaotic Map
    Tan, Ru-Chao
    Liu, Xing
    Tan, Ru-Gao
    Li, Jian
    Xiao, Hui
    Xu, Jian-Jun
    Yang, Ji-Hai
    Zhou, Yang
    Fu, De-Lin
    Yin, Fang
    Huang, Lang-Xin
    Gong, Li-Hua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (03) : 1090 - 1102
  • [16] Cryptosystem for Grid Data Based on Quantum Convolutional Neural Networks and Quantum Chaotic Map
    Ru-Chao Tan
    Xing Liu
    Ru-Gao Tan
    Jian Li
    Hui Xiao
    Jian-Jun Xu
    Ji-Hai Yang
    Yang Zhou
    De-Lin Fu
    Fang Yin
    Lang-Xin Huang
    Li-Hua Gong
    International Journal of Theoretical Physics, 2021, 60 : 1090 - 1102
  • [17] Quantum data learning for quantum simulations in high-energy physics
    Nagano, Lento
    Miessen, Alexander
    Onodera, Tamiya
    Tavernelli, Ivano
    Tacchino, Francesco
    Terashi, Koji
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [18] Neural networks in high energy physics: a ten year perspective
    Denby, B
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 119 (2-3) : 219 - 231
  • [19] ON THE USE OF NEURAL NETWORKS IN HIGH-ENERGY PHYSICS EXPERIMENTS
    HUMPERT, B
    COMPUTER PHYSICS COMMUNICATIONS, 1990, 56 (03) : 299 - 311
  • [20] Hybrid Quantum Convolutional Neural Networks in TensorFlow Quantum
    Khurelsukh, Bishrelt
    2022 33RD IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2022,