Quantum convolutional neural networks for high energy physics data analysis

被引:44
作者
Chen, Samuel Yen-Chi [1 ]
Wei, Tzu-Chieh [2 ,3 ]
Zhang, Chao [4 ]
Yu, Haiwang [4 ]
Yoo, Shinjae [1 ]
机构
[1] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Phys Dept, Upton, NY 11973 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 01期
关键词
Number:; -; Acronym:; USDOE; Sponsor: U.S. Department of Energy; SC; Sponsor: Office of Science; DE-SC-0012704; HEP; Sponsor: High Energy Physics; 20-024; LDRD; Sponsor: Laboratory Directed Research and Development;
D O I
10.1103/PhysRevResearch.4.013231
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a quantum convolutional neural network (QCNN) for the classification of high energy physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino Experiment. The proposed quantum architecture demonstrates an advantage of learning faster than the classical convolutional neural networks (CNNs) under a similar number of parameters. In addition to the faster convergence, the QCNN achieves a greater test accuracy compared to CNNs. Based on our results from numerical simulations, it is a promising direction to apply QCNN and other quantum machine learning models to high energy physics and other scientific fields.
引用
收藏
页数:11
相关论文
共 76 条
  • [1] Neutrino interaction classification with a convolutional neural network in the DUNE far detector
    Abi, B.
    Acciarri, R.
    Acero, M. A.
    Adamov, G.
    Adams, D.
    Adinolfi, M.
    Ahmad, Z.
    Ahmed, J.
    Alion, T.
    Monsalve, S. Alonso
    Alt, C.
    Anderson, J.
    Andreopoulos, C.
    Andrews, M. P.
    Andrianala, F.
    Andringa, S.
    Ankowski, A.
    Antonova, M.
    Antusch, S.
    Aranda-Fernandez, A.
    Ariga, A.
    Arnold, L. O.
    Arroyave, M. A.
    Asaadi, J.
    Aurisano, A.
    Aushev, V.
    Autiero, D.
    Azfar, F.
    Back, H.
    Back, J. J.
    Backhouse, C.
    Baesso, P.
    Bagby, L.
    Bajou, R.
    Balasubramanian, S.
    Baldi, P.
    Bambah, B.
    Barao, F.
    Barenboim, G.
    Barker, G. J.
    Barkhouse, W.
    Barnes, C.
    Barr, G.
    Monarca, J. Barranco
    Barros, N.
    Barrow, J. L.
    Bashyal, A.
    Basque, V.
    Bay, F.
    Alba, J. L. Bazo
    [J]. PHYSICAL REVIEW D, 2020, 102 (09)
  • [2] Abi B., 2020, DUNE PHYS, VII, P2
  • [3] Abohashima Z., ARXIV200612270
  • [4] Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
    Acciarri, R.
    Adams, C.
    An, R.
    Asaadi, J.
    Auger, M.
    Bagby, L.
    Baller, B.
    Barr, G.
    Bass, M.
    Bay, F.
    Bishai, M.
    Blake, A.
    Bolton, T.
    Bugel, L.
    Camilleri, L.
    Caratelli, D.
    Carls, B.
    Fernandez, R. Castillo
    Cavanna, F.
    Chen, H.
    Church, E.
    Cianci, D.
    Collin, G. H.
    Conrad, J. M.
    Convery, M.
    Crespo-Anadon, J. I.
    Del Tutto, M.
    Devitt, D.
    Dytman, S.
    Eberly, B.
    Ereditato, A.
    Sanchez, L. Escudero
    Esquivel, J.
    Fleming, B. T.
    Foreman, W.
    Furmanski, A. P.
    Garvey, G. T.
    Genty, V.
    Goeldi, D.
    Gollapinni, S.
    Graf, N.
    Gramellini, E.
    Greenlee, H.
    Grosso, R.
    Guenette, R.
    Hackenburg, A.
    Hamilton, P.
    Hen, O.
    Hewes, J.
    Hill, C.
    [J]. JOURNAL OF INSTRUMENTATION, 2017, 12
  • [5] A deep convolutional neural network model to classify heartbeats
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adam, Muhammad
    Gertych, Arkadiusz
    Tan, Ru San
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 : 389 - 396
  • [6] Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation
    Adams, C.
    An, R.
    Anthony, J.
    Asaadi, J.
    Auger, M.
    Bagby, L.
    Balasubramanian, S.
    Baller, B.
    Barnes, C.
    Barr, G.
    Bass, M.
    Bay, F.
    Bhat, A.
    Bhattacharya, K.
    Bishai, M.
    Blake, A.
    Bolton, T.
    Camilleri, L.
    Caratelli, D.
    Fernandez, R. Castillo
    Cavanna, F.
    Cerati, G.
    Chen, H.
    Chen, Y.
    Church, E.
    Cianci, D.
    Cohen, E.
    Collin, G. H.
    Conrad, J. M.
    Convery, M.
    Cooper-Troendle, L.
    Crespo-Anadon, J., I
    Del Tutto, M.
    Devitt, D.
    Diaz, A.
    Dytman, S.
    Eberly, B.
    Ereditato, A.
    Sanchez, L. Escudero
    Esquivel, J.
    Evans, J. J.
    Fadeeva, A. A.
    Fleming, B. T.
    Foreman, W.
    Furmanski, A. P.
    Garcia-Gamez, D.
    Garvey, G. T.
    Genty, V
    Goeldi, D.
    Gollapinni, S.
    [J]. JOURNAL OF INSTRUMENTATION, 2018, 13
  • [7] [Anonymous], 1974, eConf, Patent No. 740805
  • [8] [Anonymous], 1976, FNAL Technical Report No. FERMILAB-PROPOSAL-0496
  • [9] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [10] A convolutional neural network neutrino event classifier
    Aurisano, A.
    Radovic, A.
    Rocco, D.
    Himmel, A.
    Messier, M. D.
    Niner, E.
    Pawloski, G.
    Psihas, F.
    Sousa, A.
    Vahle, P.
    [J]. JOURNAL OF INSTRUMENTATION, 2016, 11