Steklov regularization and trajectory methods for univariate global optimization

被引:4
作者
Arikan, Orhan [1 ]
Burachik, Regina S. [2 ]
Kaya, C. Yalcin [2 ]
机构
[1] Bilkent Univ, Elect & Elect Engn Dept, TR-06800 Ankara, Turkey
[2] Univ South Australia, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
关键词
Global optimization; Mean filter; Steklov smoothing; Steklov regularization; Scale-shift invariance; Trajectory methods; MINIMIZATION; NONSMOOTH;
D O I
10.1007/s10898-019-00837-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a new regularization technique, using what we refer to as the Steklov regularization function, and apply this technique to devise an algorithm that computes a global minimizer of univariate coercive functions. First, we show that the Steklov regularization convexifies a given univariate coercive function. Then, by using the regularization parameter as the independent variable, a trajectory is constructed on the surface generated by the Steklov function. For monic quartic polynomials, we prove that this trajectory does generate a global minimizer. In the process, we derive some properties of quartic polynomials. Comparisons are made with a previous approach which uses a quadratic regularization function. We carry out numerical experiments to illustrate the working of the new method on polynomials of various degree as well as a non-polynomial function.
引用
收藏
页码:91 / 120
页数:30
相关论文
共 50 条
[41]   Stochastic methods for practical global optimization [J].
Zabinsky, ZB .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) :433-444
[42]   ACCELERATION OF UNIVARIATE GLOBAL OPTIMIZATION ALGORITHMS WORKING WITH LIPSCHITZ FUNCTIONS AND LIPSCHITZ FIRST DERIVATIVES [J].
Lera, Daniela ;
Sergeyev, Yaroslav D. .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (01) :508-529
[43]   Univariate global optimization with multiextremal non-differentiable constraints without penalty functions [J].
Sergeyev, Yaroslav D. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (02) :229-248
[44]   Newton’s Method for Global Free Flight Trajectory Optimization [J].
Borndörfer R. ;
Danecker F. ;
Weiser M. .
Operations Research Forum, 4 (3)
[45]   REGULARIZATION METHODS FOR SDP RELAXATIONS IN LARGE-SCALE POLYNOMIAL OPTIMIZATION [J].
Nie, Jiawang ;
Wang, Li .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (02) :408-428
[46]   Non-genetic global optimization methods in molecular science: An overview [J].
Calvo, F. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (01) :8-15
[47]   New interval methods for constrained global optimization [J].
Markót, MC ;
Fernández, J ;
Casado, LG ;
Csendes, T .
MATHEMATICAL PROGRAMMING, 2006, 106 (02) :287-318
[48]   Lipschitz global optimization methods in control problems [J].
D. E. Kvasov ;
Ya. D. Sergeyev .
Automation and Remote Control, 2013, 74 :1435-1448
[49]   Global interval methods for local nonsmooth optimization [J].
Görges, C ;
Ratschek, H .
JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (02) :157-179
[50]   CUSTOMIZING METHODS FOR GLOBAL OPTIMIZATION - A GEOMETRIC VIEWPOINT [J].
BARITOMPA, W .
JOURNAL OF GLOBAL OPTIMIZATION, 1993, 3 (02) :193-212