Steklov regularization and trajectory methods for univariate global optimization

被引:4
作者
Arikan, Orhan [1 ]
Burachik, Regina S. [2 ]
Kaya, C. Yalcin [2 ]
机构
[1] Bilkent Univ, Elect & Elect Engn Dept, TR-06800 Ankara, Turkey
[2] Univ South Australia, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
关键词
Global optimization; Mean filter; Steklov smoothing; Steklov regularization; Scale-shift invariance; Trajectory methods; MINIMIZATION; NONSMOOTH;
D O I
10.1007/s10898-019-00837-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a new regularization technique, using what we refer to as the Steklov regularization function, and apply this technique to devise an algorithm that computes a global minimizer of univariate coercive functions. First, we show that the Steklov regularization convexifies a given univariate coercive function. Then, by using the regularization parameter as the independent variable, a trajectory is constructed on the surface generated by the Steklov function. For monic quartic polynomials, we prove that this trajectory does generate a global minimizer. In the process, we derive some properties of quartic polynomials. Comparisons are made with a previous approach which uses a quadratic regularization function. We carry out numerical experiments to illustrate the working of the new method on polynomials of various degree as well as a non-polynomial function.
引用
收藏
页码:91 / 120
页数:30
相关论文
共 50 条
[21]   Global descent methods for unconstrained global optimization [J].
Z. Y. Wu ;
D. Li ;
L. S. Zhang .
Journal of Global Optimization, 2011, 50 :379-396
[22]   Global 4-D trajectory optimization for spacecraft [J].
NAN Ying HUANG GuoQiangLU YuPingGONG Ping School of AstronauticsNanjing University of Aeronautics and AstronauticsNanjing China .
Science China(Technological Sciences), 2010, 53 (08) :2097-2101
[23]   Global 4-D trajectory optimization for spacecraft [J].
Nan Ying ;
Huang GuoQiang ;
Lu YuPing ;
Gong Ping .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 53 (08) :2097-2101
[24]   Global 4-D trajectory optimization for spacecraft [J].
Ying Nan ;
GuoQiang Huang ;
YuPing Lu ;
Ping Gong .
Science China Technological Sciences, 2010, 53 :2097-2101
[25]   Levy Flight Trajectory-Based Whale Optimization Algorithm for Global Optimization [J].
Ling, Ying ;
Zhou, Yongquan ;
Luo, Qifang .
IEEE ACCESS, 2017, 5 :6168-6186
[26]   WORST-CASE COMPLEXITY OF SMOOTHING QUADRATIC REGULARIZATION METHODS FOR NON-LIPSCHITZIAN OPTIMIZATION [J].
Bian, Wei ;
Chen, Xiaojun .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) :1718-1741
[27]   Parallel two-phase methods for global optimization on GPU [J].
Ferreiro, Ana M. ;
Garcia-Rodriguez, Jose Antonio ;
Vazquez, Carlos ;
Costa e Silva, E. ;
Correia, A. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 156 :67-90
[28]   A new global optimization method for univariate constrained twice-differentiable NLP problems [J].
Chang, Min Ho ;
Park, Young Cheol ;
Lee, Tai-Yong .
JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (01) :79-100
[29]   Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints [J].
Sergeyev, YD ;
Famularo, D ;
Pugliese, P .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (03) :317-341
[30]   A new global optimization method for univariate constrained twice-differentiable NLP problems [J].
Min Ho Chang ;
Young Cheol Park ;
Tai-Yong Lee .
Journal of Global Optimization, 2007, 39 :79-100