Steklov regularization and trajectory methods for univariate global optimization

被引:3
|
作者
Arikan, Orhan [1 ]
Burachik, Regina S. [2 ]
Kaya, C. Yalcin [2 ]
机构
[1] Bilkent Univ, Elect & Elect Engn Dept, TR-06800 Ankara, Turkey
[2] Univ South Australia, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
关键词
Global optimization; Mean filter; Steklov smoothing; Steklov regularization; Scale-shift invariance; Trajectory methods; MINIMIZATION; NONSMOOTH;
D O I
10.1007/s10898-019-00837-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a new regularization technique, using what we refer to as the Steklov regularization function, and apply this technique to devise an algorithm that computes a global minimizer of univariate coercive functions. First, we show that the Steklov regularization convexifies a given univariate coercive function. Then, by using the regularization parameter as the independent variable, a trajectory is constructed on the surface generated by the Steklov function. For monic quartic polynomials, we prove that this trajectory does generate a global minimizer. In the process, we derive some properties of quartic polynomials. Comparisons are made with a previous approach which uses a quadratic regularization function. We carry out numerical experiments to illustrate the working of the new method on polynomials of various degree as well as a non-polynomial function.
引用
收藏
页码:91 / 120
页数:30
相关论文
共 50 条
  • [1] Steklov regularization and trajectory methods for univariate global optimization
    Orhan Arıkan
    Regina S. Burachik
    C. Yalçın Kaya
    Journal of Global Optimization, 2020, 76 : 91 - 120
  • [2] Steklov convexification and a trajectory method for global optimization of multivariate quartic polynomials
    Burachik, Regina S.
    Kaya, C. Yalcin
    MATHEMATICAL PROGRAMMING, 2021, 189 (1-2) : 187 - 216
  • [3] Steklov convexification and a trajectory method for global optimization of multivariate quartic polynomials
    Regina S. Burachik
    C. Yalçın Kaya
    Mathematical Programming, 2021, 189 : 187 - 216
  • [4] Dynamic search trajectory methods for global optimization
    Stamatios-Aggelos N. Alexandropoulos
    Panos M. Pardalos
    Michael N. Vrahatis
    Annals of Mathematics and Artificial Intelligence, 2020, 88 : 3 - 37
  • [5] Dynamic search trajectory methods for global optimization
    Alexandropoulos, Stamatios-Aggelos N.
    Pardalos, Panos M.
    Vrahatis, Michael N.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (1-3) : 3 - 37
  • [6] COMBINATION OF TWO UNDERESTIMATORS FOR UNIVARIATE GLOBAL OPTIMIZATION
    Ouanes, Mohand
    Chebbah, Mohammed
    Zidna, Ahmed
    RAIRO-OPERATIONS RESEARCH, 2018, 52 (01) : 177 - 186
  • [7] New Underestimator for Univariate Global Optimization
    Ouanes, Mohand
    Hoai An Le Thi
    Zidna, Ahmed
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 403 - 410
  • [8] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    Cavoretto, R.
    De Rossi, A.
    Mukhametzhanov, M. S.
    Sergeyev, Ya. D.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (02) : 305 - 327
  • [9] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    R. Cavoretto
    A. De Rossi
    M. S. Mukhametzhanov
    Ya. D. Sergeyev
    Journal of Global Optimization, 2021, 79 : 305 - 327
  • [10] UNIVARIATE GEOMETRIC LIPSCHITZ GLOBAL OPTIMIZATION ALGORITHMS
    Kvasov, Dmitri E.
    Sergeyev, Yaroslav D.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (01): : 69 - 90