Recent progress in analog memory-based accelerators for deep learning

被引:159
作者
Tsai, Hsinyu [1 ]
Ambrogio, Stefano [1 ]
Narayanan, Pritish [1 ]
Shelby, Robert M. [1 ]
Burr, Geoffrey W. [1 ]
机构
[1] IBM Res Almaden, 650 Harry Rd, San Jose, CA 95120 USA
关键词
analog memory; non-volatile memory; hardware accelerators; deep learning; NEURAL-NETWORKS; OPTICAL IMPLEMENTATION; PHASE-CHANGE; HOPFIELD MODEL; DEVICES; SYNAPSE; DESIGN; STRATEGIES; SYSTEM; ARRAY;
D O I
10.1088/1361-6463/aac8a5
中图分类号
O59 [应用物理学];
学科分类号
摘要
We survey recent progress in the use of analog memory devices to build neuromorphic hardware accelerators for deep learning applications. After an overview of deep learning and the application opportunities for deep neural network (DNN) hardware accelerators, we briefly discuss the research area of customized digital accelerators for deep learning. We discuss how the strengths and weaknesses of analog memory-based accelerators match well to the weaknesses and strengths of digital accelerators, and attempt to identify where the future hardware opportunities might be found. We survey the extensive but rapidly developing literature on what would be needed from an analog memory device to enable such a DNN accelerator, and summarize progress with various analog memory candidates including non-volatile memory such as resistive RAM, phase change memory, Li-ion-based devices, capacitor-based and other CMOS devices, as well as photonics-based devices and systems. After surveying how recent circuits and systems work, we conclude with a description of the next research steps that will be needed in order to move closer to the commercialization of viable analog-memory-based DNN hardware accelerators.
引用
收藏
页数:27
相关论文
共 168 条
[1]  
Abel S, 2017, P ICRC
[2]   A Hybrid Barium Titanate-Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning [J].
Abel, Stefan ;
Stoeferle, Thilo ;
Marchiori, Chiara ;
Caimi, Daniele ;
Czornomaz, Lukas ;
Stuckelberger, Michael ;
Sousa, Marilyne ;
Offrein, Bert J. ;
Fompeyrine, Jean .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (08) :1688-1693
[3]  
Agarwal S, 2017, S VLSI TECH, pT174, DOI 10.23919/VLSIT.2017.7998164
[4]  
Agarwal S, 2016, IEEE IJCNN, P929, DOI 10.1109/IJCNN.2016.7727298
[5]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[6]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[7]   Noise-Induced Resistance Broadening in Resistive Switching Memory-Part II: Array Statistics [J].
Ambrogio, Stefano ;
Balatti, Simone ;
McCaffrey, Vincent ;
Wang, Daniel C. ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3812-3819
[8]   Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset Variability [J].
Ambrogio, Stefano ;
Balatti, Simone ;
Cubeta, Antonio ;
Calderoni, Alessandro ;
Ramaswamy, Nirmal ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (08) :2912-2919
[9]  
[Anonymous], 1957, Technical report
[10]  
[Anonymous], ARXIV171201253