A new superconvergence property of Wilson nonconforming finite element

被引:58
作者
Shi, ZC [1 ]
Jiang, B
Xue, WM
机构
[1] Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong
关键词
Mathematics Subject Classification (1991):65N30;
D O I
10.1007/s002110050312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the Wilson nonconforming finite element method is considered to solve a class of two-dimensional second-order elliptic boundary value problems. A new superconvergence property at the vertices and the midpoints of four edges of rectangular meshes is obtained.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 9 条
[1]   SUPERCONVERGENCE ANALYSIS AND ERROR EXPANSION FOR THE WILSON NONCONFORMING FINITE-ELEMENT [J].
CHEN, HS ;
LI, B .
NUMERISCHE MATHEMATIK, 1994, 69 (02) :125-140
[2]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[3]   CONVERGENCE OF THE NONCONFORMING WILSON ELEMENT FOR ARBITRARY QUADRILATERAL MESHES [J].
LESAINT, P ;
ZLAMAL, M .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :33-52
[4]  
Lesaint P., 1976, Computer Methods in Applied Mechanics and Engineering, V7, P1, DOI 10.1016/0045-7825(76)90002-5
[5]  
LI B, 1987, 1 CHIN C NUM METH PD
[6]   A CONVERGENCE CONDITION FOR THE QUADRILATERAL WILSON ELEMENT [J].
SHI, ZC .
NUMERISCHE MATHEMATIK, 1984, 44 (03) :349-361
[7]  
Shi Zhong-ci, 1986, Mathematica Numerica Sinica, V8, P159
[8]  
ZHU QD, 1989, SUPERCONVERGENCE THE
[9]  
Zienkiewicz O.C., 1977, The finite element method