Approximation of the Fractional-Order Laplacian sα As a Weighted Sum of First-Order High-Pass Filters

被引:60
作者
AbdelAty, A. M. [1 ]
Elwakil, A. S. [2 ,3 ]
Radwan, A. G. [3 ,4 ]
Psychalinos, C. [5 ]
Maundy, B. J. [6 ]
机构
[1] Fayoum Univ, Engn Math & Phys Dept, Al Fayyum 63514, Egypt
[2] Univ Sharjah, Dept Elect & Comp Engn, Sharjah 27272, U Arab Emirates
[3] Nile Univ, Nanoelect Integrated Syst Ctr, Giza 16453, Egypt
[4] Cairo Univ, Engn Math & Phys Dept, Giza 12613, Egypt
[5] Univ Patras, Phys Dept, Elect Lab, Rion 26504, Greece
[6] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
关键词
Fractional-order circuits; fractional-order capacitors; fractional-order integration/differentiation; DIFFERENTIATOR; REALIZATION; CAPACITORS; DESIGN; POWER;
D O I
10.1109/TCSII.2018.2808949
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new approximation method of the fractional-order Laplacian operator s(alpha) is introduced. The approximation is based on a weighted sum of first-order filter sections and its analytical proof is given. The optimal high-pass filter section parameters that cover six frequency decades are obtained using the flower pollination algorithm while the effect of the number of filter sections on the accuracy of the approximation is investigated. Approximations of fractional-order capacitors of orders alpha = 0.5 and alpha = 0.7 synthesized in Foster-II form are given as a validating example. Further, an active emulator of a fractional-order differentiator function based on this technique is also proposed and experimentally validated.
引用
收藏
页码:1114 / 1118
页数:5
相关论文
共 29 条
[1]   On the Analysis and Design of Fractional-Order Chebyshev Complex Filter [J].
AbdelAty, Amr M. ;
Soltan, Ahmed ;
Ahmed, Waleed A. ;
Radwan, Ahmed G. .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (03) :915-938
[2]   Robust switched fractional controller for performance improvement of single phase active power filter under unbalanced conditions [J].
Afghoul, H. ;
Krim, F. ;
Chikouche, D. ;
Beddar, A. .
FRONTIERS IN ENERGY, 2016, 10 (02) :203-212
[3]   Ferroelectric Fractional-Order Capacitors [J].
Agambayev, Agamyrat ;
Patole, Shashikant P. ;
Farhat, Mohamed ;
Elwakil, Ahmed ;
Bagci, Hakan ;
Salama, Khaled N. .
CHEMELECTROCHEM, 2017, 4 (11) :2807-2813
[4]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[5]   Fractional Order Butterworth Filter: Active and Passive Realizations [J].
Ali, A. Soltan ;
Radwan, A. G. ;
Soliman, Ahmed M. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (03) :346-354
[6]   Realization of a constant phase element and its performance study in a differentiator circuit [J].
Biswas, Karabi ;
Sen, Siddhartha ;
Dutta, Pranab Kumar .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (09) :802-806
[7]  
CARLSON GE, 1964, IEEE T CIRCUITS SYST, VCT11, P210
[8]   Disturbance-Observer-Based Robust Synchronization Control for a Class of Fractional-Order Chaotic Systems [J].
Chen, Mou ;
Shao, Shu-Yi ;
Shi, Peng ;
Shi, Yan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (04) :417-421
[9]   On the biquadratic approximation of fractional-order Laplacian operators [J].
El-Khazali, Reyad .
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2015, 82 (03) :503-517
[10]   Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites [J].
Elshurafa, A. M. ;
Almadhoun, Mahmoud N. ;
Salama, K. N. ;
Alshareef, H. N. .
APPLIED PHYSICS LETTERS, 2013, 102 (23)