Evolutionary heuristics for finding cryptographically strong s-boxes

被引:0
作者
Millan, W [1 ]
Burnett, L [1 ]
Carter, G [1 ]
Clark, A [1 ]
Dawson, E [1 ]
机构
[1] Queensland Univ Technol, Informat Secur Res Ctr, Brisbane, Qld 4001, Australia
来源
INFORMATION AND COMMUNICATION SECURITY, PROCEEDINGS | 1999年 / 1726卷
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances are reported in the use of heuristic optimisation for the design of cryptographic mappings. The genetic algorithm (GA) is adapted for the design of regular substitution boxes (s-boxes) with relatively high nonlinearity and low autocorrelation. We discuss the selection of suitable GA parameters, and in particular we introduce an effective technique for breeding s-boxes. This assimilation operation, produces a new s-box which is a simple and natural compromise between the properties of two dissimilar parent s-boxes. Our results demonstrate that assimilation provides rapid convergence to good solutions. We present an analysis comparing the relative effectiveness of including a local optimisation procedure at various stages of the CA. Our results show that these algorithms find cryptographically strong s-boxes faster than exhaustive search.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条
[31]   A group theoretic approach to construct cryptographically strong substitution boxes [J].
Iqtadar Hussain ;
Tariq Shah ;
Muhammad Asif Gondal ;
Waqar Ahmad Khan ;
Hasan Mahmood .
Neural Computing and Applications, 2013, 23 :97-104
[32]   A group theoretic approach to construct cryptographically strong substitution boxes [J].
Hussain, Iqtadar ;
Shah, Tariq ;
Gondal, Muhammad Asif ;
Khan, Waqar Ahmad ;
Mahmood, Hasan .
NEURAL COMPUTING & APPLICATIONS, 2013, 23 (01) :97-104
[33]   ARE BIG S-BOXES BEST [J].
GORDON, JA ;
RETKIN, H .
LECTURE NOTES IN COMPUTER SCIENCE, 1983, 149 :257-262
[34]   Affine equivalence in S-boxes [J].
Sakalli, M. Tolga ;
Bulus, Ercan ;
Sahin, Andac ;
Buyuksaracogcu, Fatma .
2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, :45-+
[35]   Extremal generalized S-boxes [J].
Satko, L ;
Grosek, O ;
Nemoga, K .
COMPUTING AND INFORMATICS, 2003, 22 (01) :85-99
[36]   PERFECT NONLINEAR S-BOXES [J].
NYBERG, K .
LECTURE NOTES IN COMPUTER SCIENCE, 1991, 547 :378-386
[37]   DPA attacks and S-boxes [J].
Prouff, E .
FAST SOFTWARE ENCRYPTION, 2005, 3557 :424-441
[38]   GENERALIZED NONLINEARITY OF S-BOXES [J].
Gangopadhyay, Sugata ;
Paul, Goutam ;
Sinha, Nishant ;
Stanica, Pantelimon .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (01) :115-122
[39]   Linear redundancy in S-boxes [J].
Fuller, J ;
Millan, W .
FAST SOFTWARE ENCRYPTION, 2003, 2887 :74-86
[40]   S-boxes with controllable nonlinearity [J].
Cheon, JH ;
Chee, S ;
Park, C .
ADVANCES IN CRYPTOLOGY - EUROCRYPT'99, 1999, 1592 :286-294