Evolutionary heuristics for finding cryptographically strong s-boxes

被引:0
作者
Millan, W [1 ]
Burnett, L [1 ]
Carter, G [1 ]
Clark, A [1 ]
Dawson, E [1 ]
机构
[1] Queensland Univ Technol, Informat Secur Res Ctr, Brisbane, Qld 4001, Australia
来源
INFORMATION AND COMMUNICATION SECURITY, PROCEEDINGS | 1999年 / 1726卷
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances are reported in the use of heuristic optimisation for the design of cryptographic mappings. The genetic algorithm (GA) is adapted for the design of regular substitution boxes (s-boxes) with relatively high nonlinearity and low autocorrelation. We discuss the selection of suitable GA parameters, and in particular we introduce an effective technique for breeding s-boxes. This assimilation operation, produces a new s-box which is a simple and natural compromise between the properties of two dissimilar parent s-boxes. Our results demonstrate that assimilation provides rapid convergence to good solutions. We present an analysis comparing the relative effectiveness of including a local optimisation procedure at various stages of the CA. Our results show that these algorithms find cryptographically strong s-boxes faster than exhaustive search.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条
[1]   Cryptographically Strong S-Boxes Based on Cellular Automata [J].
Szaban, Miroslaw ;
Seredynski, Franciszek .
CELLULAR AUTOMATA, PROCEEDINGS, 2008, 5191 :478-+
[2]   Construction of Cryptographically Strong S-Boxes Inspired by Bee Waggle Dance [J].
Isa, Herman ;
Jamil, Norziana ;
Z'Aba, Muhammad Reza .
NEW GENERATION COMPUTING, 2016, 34 (03) :221-238
[3]   A Novel Optimization Method for Constructing Cryptographically Strong Dynamic S-Boxes [J].
Ibrahim, Saleh ;
Abbas, Alaa M. .
IEEE ACCESS, 2020, 8 :225004-225017
[4]   Construction of Cryptographically Strong S-Boxes Inspired by Bee Waggle Dance [J].
Herman Isa ;
Norziana Jamil ;
Muhammad Reza Z’aba .
New Generation Computing, 2016, 34 :221-238
[5]   Construction of cryptographically strong S-boxes from ternary quasigroups of order 4 [J].
Chauhan, Dimpy ;
Gupta, Indivar ;
Mishra, P. R. ;
Verma, Rashmi .
CRYPTOLOGIA, 2022, 46 (06) :525-551
[6]   A method for obtaining cryptographically strong 8x8 S-boxes [J].
Yi, X ;
Cheng, SX ;
You, XH ;
Lam, KY .
GLOBECOM 97 - IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, CONFERENCE RECORD, VOLS 1-3, 1997, :689-693
[7]   Designing Cryptographically Strong S-Boxes with Use of 1D Cellular Automata [J].
Szaban, Miroslaw ;
Seredynski, Franciszek .
JOURNAL OF CELLULAR AUTOMATA, 2011, 6 (01) :91-104
[8]   A novel framework for the construction of cryptographically secure S-boxes [J].
Arshad, Razi ;
Jalil, Mudassir ;
Hussain, Muzamal ;
Tounsi, Abdelouahed .
COMPUTERS AND CONCRETE, 2024, 34 (01) :833-845
[9]   Enhancement of Non-Permutation Binomial Power Functions to Construct Cryptographically Strong S-Boxes [J].
Isa, Herman ;
Syed Junid, Syed Alwee Aljunid ;
Z'aba, Muhammad Reza ;
Endut, Rosdisham ;
Ammar, Syed Mohammad ;
Ali, Norshamsuri .
MATHEMATICS, 2023, 11 (02)
[10]   Degree, closeness and eigenvector for the construction of cryptographically secure S-boxes [J].
Alali, Amal S. ;
Jamil, Muhammad Kamran ;
Ali, Rashad ;
Alotaibi, Refah ;
Albalawi, Wedad .
AIN SHAMS ENGINEERING JOURNAL, 2025, 16 (10)