Decoy-state quantum key distribution with direct modulated commercial off-the-shelf VCSEL lasers

被引:1
作者
De La Cruz, Noel [1 ]
Paudel, Uttam [1 ]
Ionov, Pavel [1 ]
Tucker, Ethan H. [1 ]
Mollner, Andrew [1 ]
Touch, Joseph [2 ]
Betser, Joseph [3 ]
Stoermer, Joshua [4 ]
机构
[1] Aerosp Corp, Photon Technol Dept, El Segundo, CA 90245 USA
[2] Aerosp Corp, ICSD Div, El Segundo, CA 90245 USA
[3] Aerosp Corp, El Segundo, CA 90245 USA
[4] Aerosp Corp, Cloud Platforms & Architectures Dept, El Segundo, CA 90245 USA
来源
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20) | 2020年
关键词
quantum key distribution; COTS; optical communications; BB84; VCSEL; APD; cryptography;
D O I
10.1109/QCE49297.2020.00034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a BB84 decoy-state quantum key distribution (QKD) system constructed using commercial off-the-shelf (COTS) components. Four 794 nm vertical-cavity surface-emitting lasers (VCSELs) are current-modulated at 10 MHz rate with three power levels to form a decoy state transmitter. The COTS VCSELs exhibit long term stability with high polarization extinction ratio, narrow band operation (sub-nanometer bandwidth), and wavelength tunability and stability suitable for constructing four indistinguishable qubit channels. A 780 nm, 10 MHz time-transfer channel is used for transferring the timing information along with a start and end marker for the qubit transfer period. Internally-developed transmitter laser drivers and receiver detectors are controlled and read out with COTS system-on-chip (SoC) boards. We obtain a nominal bit-error-rate (BER) of similar to 4% for the system. We also report on the development of a synchronous (100 MHz) single photon detector for increasing the repetition rate of our QKD system. This work shows promise for building a COTSbased, small size, weight, and power hardware for space applications.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
[21]   Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source [J].
Zhou Yuan-Yuan ;
Zhou Xue-Jun .
ACTA PHYSICA SINICA, 2011, 60 (10)
[22]   Decoy-state quantum key distribution with polarized photons over 200 km [J].
Liu, Yang ;
Chen, Teng-Yun ;
Wang, Jian ;
Cai, Wen-Qi ;
Wan, Xu ;
Chen, Luo-Kan ;
Wang, Jin-Hong ;
Liu, Shu-Bin ;
Liang, Hao ;
Yang, Lin ;
Peng, Cheng-Zhi ;
Chen, Kai ;
Chen, Zeng-Bing ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2010, 18 (08) :8587-8594
[23]   Performance of passive decoy-state quantum key distribution with mismatched local detectors [J].
Yu, Kai ;
Zhang, Chun-Hui ;
Zhou, Xing-Yu ;
Wang, Qin .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (01)
[24]   Parameter optimization in decoy-state phase-matching quantum key distribution [J].
Wang, Lu ;
Dong, Qin ;
Jiao, Rongzhen .
QUANTUM INFORMATION PROCESSING, 2023, 22 (10)
[25]   Proof-of-principle demonstration of decoy-state quantum key distribution with biased basis choices [J].
Wu, Wen-Zhe ;
Zhu, Jian-Rong ;
Ji, Liang ;
Zhang, Chun-Mei ;
Wang, Qin .
QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
[26]   Practical decoy-state measurement-device-independent quantum key distribution [J].
Sun, Shi-Hai ;
Gao, Ming ;
Li, Chun-Yan ;
Liang, Lin-Mei .
PHYSICAL REVIEW A, 2013, 87 (05)
[27]   DECOY STATE QUANTUM KEY DISTRIBUTION [J].
Ali, Sellami ;
Saharudin, Suhairi ;
Wahiddin, M. R. B. .
IIUM ENGINEERING JOURNAL, 2009, 10 (02) :81-86
[28]   Passive decoy-state quantum key distribution for the weak coherent photon source with finite-length key [J].
Li, Yuan ;
Bao, Wansu ;
Li, Hongwei ;
Zhou, Chun ;
Wang, Yang .
CHINESE PHYSICS B, 2016, 25 (01)
[29]   Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution [J].
Chen, Xiao-Ming ;
Chen, Lei ;
Yan, Ya-Long .
CHINESE PHYSICS B, 2022, 31 (12)
[30]   Passive decoy-state quantum key distribution using weak coherent pulses with modulator attenuation [J].
Li Yuan ;
Bao Wan-Su ;
Li Hong-Wei ;
Zhou Chun ;
Wang Yang .
CHINESE PHYSICS B, 2015, 24 (11)