Decoy-state quantum key distribution with direct modulated commercial off-the-shelf VCSEL lasers

被引:1
作者
De La Cruz, Noel [1 ]
Paudel, Uttam [1 ]
Ionov, Pavel [1 ]
Tucker, Ethan H. [1 ]
Mollner, Andrew [1 ]
Touch, Joseph [2 ]
Betser, Joseph [3 ]
Stoermer, Joshua [4 ]
机构
[1] Aerosp Corp, Photon Technol Dept, El Segundo, CA 90245 USA
[2] Aerosp Corp, ICSD Div, El Segundo, CA 90245 USA
[3] Aerosp Corp, El Segundo, CA 90245 USA
[4] Aerosp Corp, Cloud Platforms & Architectures Dept, El Segundo, CA 90245 USA
来源
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20) | 2020年
关键词
quantum key distribution; COTS; optical communications; BB84; VCSEL; APD; cryptography;
D O I
10.1109/QCE49297.2020.00034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a BB84 decoy-state quantum key distribution (QKD) system constructed using commercial off-the-shelf (COTS) components. Four 794 nm vertical-cavity surface-emitting lasers (VCSELs) are current-modulated at 10 MHz rate with three power levels to form a decoy state transmitter. The COTS VCSELs exhibit long term stability with high polarization extinction ratio, narrow band operation (sub-nanometer bandwidth), and wavelength tunability and stability suitable for constructing four indistinguishable qubit channels. A 780 nm, 10 MHz time-transfer channel is used for transferring the timing information along with a start and end marker for the qubit transfer period. Internally-developed transmitter laser drivers and receiver detectors are controlled and read out with COTS system-on-chip (SoC) boards. We obtain a nominal bit-error-rate (BER) of similar to 4% for the system. We also report on the development of a synchronous (100 MHz) single photon detector for increasing the repetition rate of our QKD system. This work shows promise for building a COTSbased, small size, weight, and power hardware for space applications.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
[11]   A fully passive transmitter for decoy-state quantum key distribution [J].
Zapatero, Victor ;
Wang, Wenyuan ;
Curty, Marcos .
QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (02)
[12]   Tight security bounds for decoy-state quantum key distribution [J].
Yin, Hua-Lei ;
Zhou, Min-Gang ;
Gu, Jie ;
Xie, Yuan-Mei ;
Lu, Yu-Shuo ;
Chen, Zeng-Bing .
SCIENTIFIC REPORTS, 2020, 10 (01)
[13]   Practical covert quantum key distribution with decoy-state method [J].
Guo, Fen-Zhuo ;
Liu, Li ;
Wang, An-Kang ;
Wen, Qiao-Yan .
QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
[14]   A Simple Scheme for Realizing the Passive Decoy-State Quantum Key Distribution [J].
Zhang, Chun-Hui ;
Wang, Dong ;
Zhang, Chun-Mei ;
Wang, Qin .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (14) :2868-2873
[15]   Concise security bounds for practical decoy-state quantum key distribution [J].
Lim, Charles Ci Wen ;
Curty, Marcos ;
Walenta, Nino ;
Xu, Feihu ;
Zbinden, Hugo .
PHYSICAL REVIEW A, 2014, 89 (02)
[16]   An enhanced proposal on decoy-state measurement device-independent quantum key distribution [J].
Wang, Qin ;
Zhang, Chun-Hui ;
Luo, Shunlong ;
Guo, Guang-Can .
QUANTUM INFORMATION PROCESSING, 2016, 15 (09) :3785-3797
[17]   Finite-key analysis of a practical decoy-state high-dimensional quantum key distribution [J].
Bao, Haize ;
Bao, Wansu ;
Wang, Yang ;
Zhou, Chun ;
Chen, Ruike .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (20)
[18]   Decoy-state method for quantum-key-distribution-based quantum private query [J].
Bin Liu ;
Shuang Xia ;
Di Xiao ;
Wei Huang ;
Bingjie Xu ;
Yang Li .
Science China Physics, Mechanics & Astronomy, 2022, 65
[19]   Practical decoy-state BB84 quantum key distribution with quantum memory* [J].
Li, Xian-Ke ;
Song, Xiao-Qian ;
Guo, Qi-Wei ;
Zhou, Xing-Yu ;
Wang, Qin .
CHINESE PHYSICS B, 2021, 30 (06)
[20]   Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions [J].
Sun Wei ;
Yin Hua-Lei ;
Sun Xiang-Xiang ;
Chen Teng-Yun .
ACTA PHYSICA SINICA, 2016, 65 (08)