Decoy-state quantum key distribution with direct modulated commercial off-the-shelf VCSEL lasers

被引:1
|
作者
De La Cruz, Noel [1 ]
Paudel, Uttam [1 ]
Ionov, Pavel [1 ]
Tucker, Ethan H. [1 ]
Mollner, Andrew [1 ]
Touch, Joseph [2 ]
Betser, Joseph [3 ]
Stoermer, Joshua [4 ]
机构
[1] Aerosp Corp, Photon Technol Dept, El Segundo, CA 90245 USA
[2] Aerosp Corp, ICSD Div, El Segundo, CA 90245 USA
[3] Aerosp Corp, El Segundo, CA 90245 USA
[4] Aerosp Corp, Cloud Platforms & Architectures Dept, El Segundo, CA 90245 USA
来源
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20) | 2020年
关键词
quantum key distribution; COTS; optical communications; BB84; VCSEL; APD; cryptography;
D O I
10.1109/QCE49297.2020.00034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a BB84 decoy-state quantum key distribution (QKD) system constructed using commercial off-the-shelf (COTS) components. Four 794 nm vertical-cavity surface-emitting lasers (VCSELs) are current-modulated at 10 MHz rate with three power levels to form a decoy state transmitter. The COTS VCSELs exhibit long term stability with high polarization extinction ratio, narrow band operation (sub-nanometer bandwidth), and wavelength tunability and stability suitable for constructing four indistinguishable qubit channels. A 780 nm, 10 MHz time-transfer channel is used for transferring the timing information along with a start and end marker for the qubit transfer period. Internally-developed transmitter laser drivers and receiver detectors are controlled and read out with COTS system-on-chip (SoC) boards. We obtain a nominal bit-error-rate (BER) of similar to 4% for the system. We also report on the development of a synchronous (100 MHz) single photon detector for increasing the repetition rate of our QKD system. This work shows promise for building a COTSbased, small size, weight, and power hardware for space applications.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [1] Passive Decoy-State Quantum Key Distribution with Coherent Light
    Curty, Marcos
    Jofre, Marc
    Pruneri, Valerio
    Mitchell, Morgan W.
    ENTROPY, 2015, 17 (06) : 4064 - 4082
  • [2] Experimental passive decoy-state quantum key distribution
    Sun, Qi-Chao
    Wang, Wei-Long
    Liu, Yang
    Zhou, Fei
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Chen, Xianfeng
    Ma, Xiongfeng
    Zhang, Qiang
    Pan, Jian-Wei
    LASER PHYSICS LETTERS, 2014, 11 (08)
  • [3] Decoy-state quantum key distribution with a leaky source
    Tamaki, Kiyoshi
    Curty, Marcos
    Lucamarini, Marco
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [4] Practical covert quantum key distribution with decoy-state method
    Fen-Zhuo Guo
    Li Liu
    An-Kang Wang
    Qiao-Yan Wen
    Quantum Information Processing, 2019, 18
  • [5] Reexamination of decoy-state quantum key distribution with biased bases
    Yu, Zong-Wen
    Zhou, Yi-Heng
    Wang, Xiang-Bin
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [6] Security Bounds for Efficient Decoy-State Quantum Key Distribution
    Lucamarini, Marco
    Dynes, James F.
    Froehlich, Bernd
    Yuan, Zhiliang
    Shields, Andrew J.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) : 1 - 8
  • [7] Decoy-state quantum key distribution with practical light source
    Jiao Rong-Zhen
    Zhang Chao
    Ma Hai-Qiang
    ACTA PHYSICA SINICA, 2011, 60 (11)
  • [8] Efficient decoy-state quantum key distribution with quantified security
    Lucamarini, M.
    Patel, K. A.
    Dynes, J. F.
    Froehlich, B.
    Sharpe, A. W.
    Dixon, A. R.
    Yuan, Z. L.
    Penty, R. V.
    Shields, A. J.
    OPTICS EXPRESS, 2013, 21 (21): : 24550 - 24565
  • [9] Tight security bounds for decoy-state quantum key distribution
    Yin, Hua-Lei
    Zhou, Min-Gang
    Gu, Jie
    Xie, Yuan-Mei
    Lu, Yu-Shuo
    Chen, Zeng-Bing
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Practical covert quantum key distribution with decoy-state method
    Guo, Fen-Zhuo
    Liu, Li
    Wang, An-Kang
    Wen, Qiao-Yan
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)