A fractional linear system view of the fractional Brownian motion

被引:30
作者
Ortigueira, MD [1 ]
Batista, AG [1 ]
机构
[1] Univ Nova Lisboa, UNINOVA, DEE, P-2825 Monte De Caparica, Portugal
关键词
backward difference; bilinear transformation; fractional Brownian motion; fractional differintegrator; Hurst parameter;
D O I
10.1007/s11071-004-3762-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A definition of the fractional Brownian motion based on the fractional differintegrator characteristics is proposed and studied. It is shown that the model enjoys the usually required properties. A discrete-time version based in the backward difference and in the bilinear transformation is considered. Some results are presented.
引用
收藏
页码:295 / 303
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1983, New York
[2]  
[Anonymous], APPL COMPUTATIONAL C
[3]   A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion [J].
Chang, YC ;
Chang, SA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) :554-559
[4]  
HOSKING JRM, 1981, BIOMETRIKA, V68, P165, DOI 10.1093/biomet/68.1.165
[5]  
KARAGIANNIS T, 2002, P GLOB INT TAIW NOV
[6]   1/F NOISE [J].
KESHNER, MS .
PROCEEDINGS OF THE IEEE, 1982, 70 (03) :212-218
[7]   A correlation-based computational model for synthesizing long-range dependent data [J].
Li, M ;
Chi, CH .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2003, 340 (6-7) :503-514
[8]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[9]   Introduction to fractional linear systems. Part 1: Continuous-time case [J].
Ortigueira, MD .
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2000, 147 (01) :62-70
[10]  
Ortigueira MD, 2000, IEE P-VIS IMAGE SIGN, V147, P71, DOI 10.1049/ip-vis:20000273