Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM-b-PEG-b-PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies

被引:54
作者
Filippov, Sergey K. [1 ]
Bogomolova, Anna [1 ]
Kaberov, Leonid [1 ]
Velychkivska, Nadiia [1 ]
Starovoytova, Larisa [1 ]
Cernochova, Zulfiya [1 ]
Rogers, Sarah E. [2 ]
Lau, Wing Man [3 ]
Khutoryanskiy, Vitally V. [3 ]
Cook, Michael T. [4 ,5 ]
机构
[1] AS CR, Inst Macromol Chem, Heyrovsky Sq 2, Prague 16206 6, Czech Republic
[2] Rutherford Appleton Lab, ISIS STFC, Chilton OX11 0QX, Oxon, England
[3] Univ Reading, Sch Pharm, POB 224, Reading RG6 6AD, Berks, England
[4] Univ Hertfordshire, Dept Pharm, Hatfield AL10 9AB, Herts, England
[5] Univ Hertfordshire, Res Ctr Top Drug Delivery & Toxicol, Hatfield AL10 9AB, Herts, England
关键词
POLY(ETHYLENE GLYCOL); BLOCK-COPOLYMERS; THERMORESPONSIVE MICELLES; POLYMER MICELLES; POLY(N-ISOPROPYLACRYLAMIDE); POLYOXAZOLINES; AGGREGATION; TRANSITION; HYDROGELS; H-1-NMR;
D O I
10.1021/acs.langmuir.6b00284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering, and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solidlike particles and chain network with a mesh size of 1-3 nm are present, nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have nonuniform structure with "frozen" areas interconnected by single chains in Gaussian conformation. SANS data with deuterated "invisible" PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation.
引用
收藏
页码:5314 / 5323
页数:10
相关论文
共 38 条
[11]   Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? [J].
Hoogenboom, Richard ;
Thijs, Hanneke M. L. ;
Jochems, Mark J. H. C. ;
van Lankvelt, Bart M. ;
Fijten, Martin W. M. ;
Schubert, Ulrich S. .
CHEMICAL COMMUNICATIONS, 2008, (44) :5758-5760
[12]   Thermoresponsive micelles for radionuclide delivery [J].
Hruby, Martin ;
Filippov, Sergey K. ;
Panek, Jiri ;
Novakova, Michaela ;
Mackova, Hana ;
Kucka, Jan ;
Ulbrich, Karel .
JOURNAL OF CONTROLLED RELEASE, 2010, 148 (01) :E60-E62
[13]   Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems [J].
Hruby, Martin ;
Filippov, Sergey K. ;
Panek, Jiri ;
Novakova, Michaela ;
Mackova, Hana ;
Kucka, Jan ;
Vetvicka, David ;
Ulbrich, Karel .
MACROMOLECULAR BIOSCIENCE, 2010, 10 (08) :916-924
[14]   Thermoresponsive, Hydrolytically Degradable Polymer Micelles Intended for Radionuclide Delivery [J].
Hruby, Martin ;
Konak, Cestmir ;
Kucka, Jan ;
Vetrik, Miroslav ;
Filippov, Sergey K. ;
Vetvicka, David ;
Mackova, Hana ;
Karlsson, Goran ;
Edwards, Katarina ;
Rihova, Blanka ;
Ulbrich, Karel .
MACROMOLECULAR BIOSCIENCE, 2009, 9 (10) :1016-1027
[15]   1H NMR study of temperature-induced phase separation in solutions of poly(N-isopropylmethacrylamide-co-acrylamide) copolymers [J].
Kourilova, Hana ;
Stastna, Julie ;
Hanykova, Lenka ;
Sedlakova, Zdenka ;
Spevacek, Jiri .
EUROPEAN POLYMER JOURNAL, 2010, 46 (06) :1299-1306
[16]   Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics [J].
Laga, Richard ;
Janouskova, Olga ;
Ulbrich, Karel ;
Pola, Robert ;
Blazkova, Jana ;
Filippov, Sergey K. ;
Etrych, Tomas ;
Pechar, Michal .
BIOMACROMOLECULES, 2015, 16 (08) :2493-2505
[17]   In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures [J].
Lin, HH ;
Cheng, YL .
MACROMOLECULES, 2001, 34 (11) :3710-3715
[18]   Thermoresponsive Nanoparticles Based on Poly(2-alkyl-2-Oxazolines) and Pluronic F127 [J].
Panek, Jiri ;
Filippov, Sergey K. ;
Hruby, Martin ;
Rabyk, Maria ;
Bogomolova, Anna ;
Kucka, Jan ;
Stepanek, Petr .
MACROMOLECULAR RAPID COMMUNICATIONS, 2012, 33 (19) :1683-1689
[19]   Thermoresponsive transition of a PEO-b-PNIPAM copolymer: From hierarchical aggregates to well defined ellipsoidal vesicles [J].
Papagiannopoulos, Aristeidis ;
Zhao, Junpeng ;
Zhang, Guangzhao ;
Pispas, Stergios ;
Radulescu, Aurel .
POLYMER, 2013, 54 (23) :6373-6380
[20]   Glycogen-graft-poly(2-alkyl-2-oxazolines) - the new versatile biopolymer-based thermoresponsive macromolecular toolbox [J].
Pospisilova, Aneta ;
Filippov, Sergey K. ;
Bogomolova, Anna ;
Turner, Stuart ;
Sedlacek, Ondrej ;
Matushkin, Nikolai ;
Cernochova, Zulfia ;
Stepanek, Petr ;
Hruby, Martin .
RSC ADVANCES, 2014, 4 (106) :61580-61588