Geometric Algebra Levenberg-Marquardt

被引:5
作者
De Keninck, Steven [1 ]
Dorst, Leo [2 ]
机构
[1] Matrix Factory, Hingene, Belgium
[2] Univ Amsterdam, Amsterdam, Netherlands
来源
ADVANCES IN COMPUTER GRAPHICS, CGI 2019 | 2019年 / 11542卷
关键词
Geometric Algebra; Levenberg-Marquardt; Automatic differentiation; Non-linear estimation;
D O I
10.1007/978-3-030-22514-8_51
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces a novel and matrix-free implementation of the widely used Levenberg-Marquardt algorithm, in the language of Geometric Algebra. The resulting algorithm is shown to be compact, geometrically intuitive, numerically stable and well suited for efficient GPU implementation. An implementation of the algorithm and the examples in this paper are publicly available.
引用
收藏
页码:511 / 522
页数:12
相关论文
共 12 条
[1]  
De Keninck S., 2017, GANJA JS GEOMETRIC A
[2]  
Fletcher R., 1971, R6799 AT EN RES
[3]  
Guennebaud G., 2010, Eigen v3
[4]  
Gunn C., 2011, GEOMETRY KINEMATICS, DOI [10.14279/depositonce-3058, DOI 10.14279/DEPOSITONCE]
[5]  
Gunn C., 2011, GUIDE GEOMETRIC ALGE, P297, DOI DOI 10.1007/978-0-85729-811-915
[6]   Geometric Algebras for Euclidean Geometry [J].
Gunn, Charles .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) :185-208
[7]   New geometric methods for computer vision: An application to structure and motion estimation [J].
Lasenby, J ;
Fitzgerald, WJ ;
Lasenby, AN ;
Doran, CJL .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 26 (03) :191-213
[8]  
More J., 1984, SOURCES DEV MATH SOF, P88
[9]  
Press W H., 1992, Numerical Recipes in Fortran, V77
[10]  
Rall L.B, 1981, Lecture Notes in Computer Science, V120, DOI [10.1007/3- 540-10861-0, DOI 10.1007/3-540-10861-0]