Submanifolds in a hyperbolic space form with flat normal bundle

被引:0
作者
Liu, XM [1 ]
机构
[1] Dalian Univ Technol, Dept Math Appl, Dalian 116024, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give some rigidity results for compact submanifolds in a hyperbolic space form with flat normal bundle to be totally umbilical.
引用
收藏
页码:405 / 414
页数:10
相关论文
共 16 条
[1]   HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN SPHERES [J].
ALENCAR, H ;
DOCARMO, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1223-1229
[2]   HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
CHENG, SY ;
YAU, ST .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :195-204
[3]   LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1969, 89 (01) :187-&
[4]  
Li HZ, 1996, MATH ANN, V305, P665
[5]  
Morvan JM, 1996, GEOMETRIAE DEDICATA, V59, P197
[6]  
Nomizu K., 1969, J DIFFER GEOM, V3, P367
[7]   HYPERSURFACES AND A PINCHING PROBLEM ON SECOND FUNDAMENTAL TENSOR [J].
OKUMURA, M .
AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (01) :207-213
[8]   ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [J].
OMORI, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (02) :205-+
[9]  
Ryan P., 1971, OSAKA J MATH, V8, P251
[10]   SUBMANIFOLDS WITH PARALLEL MEAN-CURVATURE VECTOR IN SPHERES [J].
SANTOS, W .
TOHOKU MATHEMATICAL JOURNAL, 1994, 46 (03) :403-415