Improvement of acetoin reductase activity enhances bacitracin production by Bacillus licheniformis

被引:12
作者
Wang, Zhi [1 ]
Wang, Yong [1 ]
Xie, Fuli [2 ]
Chen, Shouwen [2 ]
Li, Junhui [3 ]
Li, Dongsheng [1 ]
Chen, Xiong [1 ]
机构
[1] Hubei Univ Technol, Minist Educ, Hubei Collaborat Innovat Ctr Ind Fermentat, Key Lab Fermentat Engn, Wuhan 430068, Peoples R China
[2] Huazhong Agr Univ, Lifecome Bioengn Inst, Coll Life Sci & Technol, State Key Lab Agr Microbiol, Wuhan 430071, Peoples R China
[3] Lifecome Biochem Co Ltd, Pucheng 353400, Peoples R China
关键词
NADH oxidation; Acetoin reductase; Fermentation; Bacitracin; ESCHERICHIA-COLI; TRANSCRIPTIONAL LEVEL; TORULOPSIS-GLABRATA; SUBTILIS; METABOLISM; EXPRESSION; PATHWAY; GROWTH; GENES;
D O I
10.1016/j.procbio.2014.08.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacitracin fermentation by Bacillus licheniformis in this work showed three characteristics: (1) the extracellular propionate, butyrate, acetoin and 2,3-butanediol accumulates under conditions of low dissolved oxygen (zero after 4h cultivation), reaching a total content of approximately 11.1 g/L; (2) cell growth occurs quickly subsequent to cell autolysis and the second growth; and (3) there is a low content of 2,3-butanediol, a reduced product of acetoin catalyzed by acetoin reductase, in the culture process. In this study, addition of MnCl2 (0.3 mg/L) to the production medium increased the acetoin reductase activity, redirected the NADH oxidation partly from the propionate- and butyrate-production pathways to the 2,3-butanediol synthesis pathway, reduced the intracellular NADH/NAD(+) ratio, and facilitated cell growth, ultimately achieving a 11.6% increase in bacitracin production (1076 U/mL) versus the control. The results provide useful information regarding large-scale bacitracin production by B. licheniformis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2039 / 2043
页数:5
相关论文
共 26 条
  • [21] Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes
    van Maris, AJA
    Konings, WN
    van Dijken, JP
    Pronk, JT
    [J]. METABOLIC ENGINEERING, 2004, 6 (04) : 245 - 255
  • [22] Acetoin metabolism in bacteria
    Xiao, Zijun
    Xu, Ping
    [J]. CRITICAL REVIEWS IN MICROBIOLOGY, 2007, 33 (02) : 127 - 140
  • [23] Zhang X., 2014, PLOS ONE
  • [24] The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
    Zhang, Xian
    Zhang, Rongzhen
    Bao, Teng
    Rao, Zhiming
    Yang, Taowei
    Xu, Meijuan
    Xu, Zhenghong
    Li, Huazhong
    Yang, Shangtian
    [J]. METABOLIC ENGINEERING, 2014, 23 : 34 - 41
  • [25] Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol
    Zhang, Yanping
    Huang, Zhihua
    Du, Chenyu
    Li, Yin
    Cao, Zhu'an
    [J]. METABOLIC ENGINEERING, 2009, 11 (02) : 101 - 106
  • [26] Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products
    Zhu, Jiangfeng
    Sanchez, Ailen
    Bennett, George N.
    San, Ka-Yiu
    [J]. METABOLIC ENGINEERING, 2011, 13 (06) : 704 - 712