Improvement of acetoin reductase activity enhances bacitracin production by Bacillus licheniformis

被引:12
作者
Wang, Zhi [1 ]
Wang, Yong [1 ]
Xie, Fuli [2 ]
Chen, Shouwen [2 ]
Li, Junhui [3 ]
Li, Dongsheng [1 ]
Chen, Xiong [1 ]
机构
[1] Hubei Univ Technol, Minist Educ, Hubei Collaborat Innovat Ctr Ind Fermentat, Key Lab Fermentat Engn, Wuhan 430068, Peoples R China
[2] Huazhong Agr Univ, Lifecome Bioengn Inst, Coll Life Sci & Technol, State Key Lab Agr Microbiol, Wuhan 430071, Peoples R China
[3] Lifecome Biochem Co Ltd, Pucheng 353400, Peoples R China
关键词
NADH oxidation; Acetoin reductase; Fermentation; Bacitracin; ESCHERICHIA-COLI; TRANSCRIPTIONAL LEVEL; TORULOPSIS-GLABRATA; SUBTILIS; METABOLISM; EXPRESSION; PATHWAY; GROWTH; GENES;
D O I
10.1016/j.procbio.2014.08.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacitracin fermentation by Bacillus licheniformis in this work showed three characteristics: (1) the extracellular propionate, butyrate, acetoin and 2,3-butanediol accumulates under conditions of low dissolved oxygen (zero after 4h cultivation), reaching a total content of approximately 11.1 g/L; (2) cell growth occurs quickly subsequent to cell autolysis and the second growth; and (3) there is a low content of 2,3-butanediol, a reduced product of acetoin catalyzed by acetoin reductase, in the culture process. In this study, addition of MnCl2 (0.3 mg/L) to the production medium increased the acetoin reductase activity, redirected the NADH oxidation partly from the propionate- and butyrate-production pathways to the 2,3-butanediol synthesis pathway, reduced the intracellular NADH/NAD(+) ratio, and facilitated cell growth, ultimately achieving a 11.6% increase in bacitracin production (1076 U/mL) versus the control. The results provide useful information regarding large-scale bacitracin production by B. licheniformis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2039 / 2043
页数:5
相关论文
共 26 条
[1]  
Aftab MN, 2012, BRAZ J MICROBIOL, V43, P78, DOI 10.1590/S1517-83822012000100009
[2]   Supplementations of ornithine and KNO3 enhanced bacitracin production by Bacillus licheniformis LC-11 [J].
Chen, Xiong ;
Xie, Fuli ;
Zeng, Xinnian ;
Li, Dongsheng ;
Chen, Shouwen ;
Li, Junhui ;
Wang, Zhi .
ANNALS OF MICROBIOLOGY, 2014, 64 (02) :509-514
[3]   Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli [J].
Clements, LD ;
Miller, BS ;
Streips, UN .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 2002, 25 (02) :284-286
[4]  
Jamil B, 2007, PAK J PHARM SCI, V20, P26
[5]   Function, structure and regulation of the vacuolar (H+)-ATPases [J].
Jefferies, Kevin C. ;
Cipriano, Daniel J. ;
Forgac, Michael .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2008, 476 (01) :33-42
[6]   The glycolytic flux in Escherichia coli is controlled by the demand for ATP [J].
Koebmann, BJ ;
Westerhoff, HV ;
Snoep, JL ;
Nilsson, D ;
Jensen, PR .
JOURNAL OF BACTERIOLOGY, 2002, 184 (14) :3909-3916
[7]   The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases [J].
Konz, D ;
Klens, A ;
Schorgendorfer, K ;
Marahiel, MA .
CHEMISTRY & BIOLOGY, 1997, 4 (12) :927-937
[8]   Genome Sequences of Two Thermophilic Bacillus licheniformis Strains, Efficient Producers of Platform Chemical 2,3-Butanediol [J].
Li, Lixiang ;
Su, Fei ;
Wang, Yu ;
Zhang, Lijie ;
Liu, Cuicui ;
Li, Jingwen ;
Ma, Cuiqing ;
Xu, Ping .
JOURNAL OF BACTERIOLOGY, 2012, 194 (15) :4133-4134
[9]   Metabolic engineering of aerobic succinate prod-action systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield [J].
Lin, H ;
Bennett, GN ;
San, KY .
METABOLIC ENGINEERING, 2005, 7 (02) :116-127
[10]   Enhancement of pyruvate productivity in Torulopsis glabrata:: Increase of NAD+ availability [J].
Liu, Liming ;
Li, Yin ;
Shi, Zhongping ;
Du, Guocheng ;
Chen, Jian .
JOURNAL OF BIOTECHNOLOGY, 2006, 126 (02) :173-185