Quantum memory at an eigenstate phase transition in a weakly chaotic model

被引:4
作者
Lambert, M. R. [1 ,2 ]
Tsai, Shan-Wen [2 ]
Kelly, Shane P. [3 ,4 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; THERMALIZATION;
D O I
10.1103/PhysRevA.106.012206
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study a fully connected quantum spin model resonantly coupled to a small environment of noninteracting spins, and investigate how initial state properties are remembered at long times. We find memory of initial state properties, in addition to the total energy, that are not conserved by the dynamics. This memory occurs in the middle of the spectrum where an eigenstate quantum phase transition (ESQPT) occurs as a function of energy. The memory effect at that energy in the spectrum is robust to system-environment coupling until the coupling changes the energy of the ESQPT. This work demonstrates the effect of ESQPT memory as independent of integrability and suggests a wider generality of this mechanism for preventing thermalization at ESQPTs.
引用
收藏
页数:9
相关论文
共 68 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]  
[Anonymous], 2002, Introduction to Dynamical Systems, DOI DOI 10.1017/CBO9780511755316
[3]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[4]   Universal Threshold for the Dynamical Behavior of Lattice Systems with Long-Range Interactions [J].
Bachelard, Romain ;
Kastner, Michael .
PHYSICAL REVIEW LETTERS, 2013, 110 (17)
[5]   Krylov complexity in saddle-dominated scrambling [J].
Bhattacharjee, Budhaditya ;
Cao, Xiangyu ;
Nandy, Pratik ;
Pathak, Tanay .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
[6]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[7]   Multipartite Entanglement Structure in the Eigenstate Thermalization Hypothesis [J].
Brenes, Marlon ;
Pappalardi, Silvia ;
Goold, John ;
Silva, Alessandro .
PHYSICAL REVIEW LETTERS, 2020, 124 (04)
[8]   Non-stationary coherent quantum many-body dynamics through dissipation [J].
Buca, Berislav ;
Tindall, Joseph ;
Jaksch, Dieter .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Statistical mechanics and dynamics of solvable models with long-range interactions [J].
Campa, Alessandro ;
Dauxois, Thierry ;
Ruffo, Stefano .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 480 (3-6) :57-159
[10]   Excited state quantum phase transitions in many-body systems [J].
Caprio, M. A. ;
Cejnar, P. ;
Iachello, F. .
ANNALS OF PHYSICS, 2008, 323 (05) :1106-1135