On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures

被引:199
作者
Kim, Jin-Kyung [1 ]
Sandloebes, Stefanie [1 ]
Raabe, Dierk [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
关键词
Magnesium alloy; Long-period-stacking-ordered structure; Dislocations; Deformation structures; Transmission electron microscopy; KINK BANDS; MICROSTRUCTURE; PHASE; DISLOCATIONS; TRANSFORMATION; SEGREGATION; EVOLUTION; MAGNESIUM; STRENGTH; SLIP;
D O I
10.1016/j.actamat.2014.09.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a transmission electron microscopy study on the room temperature deformation mechanisms in a Mg97Y2Zn1 (at.%) alloy with long-period-stacking-order (LPSO) phase. The alloy consists of alpha-Mg matrix with platelet-shaped LPSO precipitates 3-5 nm thick and interdendritic LPSO (18R structures) phase grains. The interdendritic LPSO phase was found to deform either by kink-banding in conjunction with basal < a > slip or by basal < a > slip and the formation of dislocation walls. No orientation dependence of these different deformation modes was observed. The alpha-Mg matrix deforms by basal < a > slip and pyramidal < c + a > slip. No twinning was observed in the alpha-Mg matrix during room temperature deformation. The elastic modulus mismatch between alpha-Mg matrix and LPSO plates is suggested to be the main source for activating non-basal dislocations. The combination of the soft alpha-Mg matrix strengthened by LPSO precipitates and harder "bulk" interdendritic LPSO grains is suggested to contribute to the well-known good mechanical properties of Mg-LPSO alloys at room temperature. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 43 条
[1]   Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy [J].
Abe, E. ;
Ono, A. ;
Itoi, T. ;
Yamasaki, M. ;
Kawamura, Y. .
PHILOSOPHICAL MAGAZINE LETTERS, 2011, 91 (10) :690-696
[2]   Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM [J].
Abe, E ;
Kawamura, Y ;
Hayashi, K ;
Inoue, A .
ACTA MATERIALIA, 2002, 50 (15) :3845-3857
[3]   STRESS AT WHICH DISLOCATIONS ARE GENERATED AT A PARTICLE-MATRIX INTERFACE [J].
ASHBY, MF ;
GELLES, SH ;
TANNER, LE .
PHILOSOPHICAL MAGAZINE, 1969, 19 (160) :757-&
[4]   DEFORMATION OF PLASTICALLY NON-HOMOGENEOUS MATERIALS [J].
ASHBY, MF .
PHILOSOPHICAL MAGAZINE, 1970, 21 (170) :399-&
[5]   Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1GPa [J].
Barsoum, MW ;
Zhen, T ;
Kalidindi, SR ;
Radovic, M ;
Murugaiah, A .
NATURE MATERIALS, 2003, 2 (02) :107-111
[6]   Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2 [J].
Barsoum, MW ;
Farber, L ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (07) :1727-1738
[7]  
BUDIANSKI B, 1993, APPL MECH REV, V47, pS246
[8]   Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg-Y-Zn alloys [J].
Chen, Bin ;
Lin, Dongliang ;
Zeng, Xiaoqin ;
Lu, Chen .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (09) :2510-2517
[9]   Novel equilibrium two phase Mg alloy with the long-period ordered structure [J].
Chino, Y ;
Mabuchi, M ;
Hagiwara, S ;
Iwasaki, H ;
Yamamoto, A ;
Tsubakino, H .
SCRIPTA MATERIALIA, 2004, 51 (07) :711-714
[10]   The structure of long period stacking/order Mg-Zn-RE phases with extended non-stoichiometry ranges [J].
Egusa, D. ;
Abe, E. .
ACTA MATERIALIA, 2012, 60 (01) :166-178