Enhancing Knowledge Graph Completion By Embedding Correlations

被引:3
|
作者
Pal, Soumajit [1 ,2 ]
Urbani, Jacopo [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Comp Sci, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1145/3132847.3133143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite their large sizes, modern Knowledge Graphs (KGs) are still highly incomplete. Statistical relational learning methods can detect missing links by "embedding" the nodes and relations into latent feature tensors. Unfortunately, these methods are unable to learn good embeddings if the nodes are not well-connected. Our proposal is to learn embeddings for correlations between subgraphs and add a post-prediction phase to counter the lack of training data. This technique, applied on top of methods like TransE or HolE, can significantly increase the predictions on realistic KGs.
引用
收藏
页码:2247 / 2250
页数:4
相关论文
共 50 条
  • [41] Relation domain and range completion method based on knowledge graph embedding
    Lei J.-P.
    Ouyang D.-T.
    Zhang L.-M.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (01): : 154 - 161
  • [42] Knowledge graph embedding and completion based on entity community and local importance
    Yang, Xu-Hua
    Ma, Gang-Feng
    Jin, Xin
    Long, Hai-Xia
    Xiao, Jie
    Ye, Lei
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22132 - 22142
  • [43] Spatiotemporal knowledge graph completion via diachronic and transregional word embedding
    Xu, Xiaobei
    Jia, Wei
    Yan, Li
    Lu, Xiaoping
    Wang, Chao
    Ma, Zongmin
    INFORMATION SCIENCES, 2024, 667
  • [44] Cluster Robust Inference for Embedding-Based Knowledge Graph Completion
    Schramm, Simon
    Niklas, Ulrich
    Schmid, Ute
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 284 - 299
  • [45] A deep embedding model for knowledge graph completion based on attention mechanism
    Huang, Jin
    Zhang, TingHua
    Zhu, Jia
    Yu, Weihao
    Tang, Yong
    He, Yang
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (15): : 9751 - 9760
  • [46] A contrastive knowledge graph embedding model with hierarchical attention and dynamic completion
    Shang, Bin
    Zhao, Yinliang
    Liu, Jun
    Liu, Yifan
    Wang, Chenxin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 15005 - 15018
  • [47] Knowledge graph embedding and completion based on entity community and local importance
    Xu-Hua Yang
    Gang-Feng Ma
    Xin Jin
    Hai-Xia Long
    Jie Xiao
    Lei Ye
    Applied Intelligence, 2023, 53 : 22132 - 22142
  • [48] A deep embedding model for knowledge graph completion based on attention mechanism
    Jin Huang
    TingHua Zhang
    Jia Zhu
    Weihao Yu
    Yong Tang
    Yang He
    Neural Computing and Applications, 2021, 33 : 9751 - 9760
  • [49] Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding
    Xu, Chenjin
    Nayyeri, Mojtaba
    Alkhoury, Fouad
    Yazdi, Hamed
    Lehmann, Jens
    SEMANTIC WEB - ISWC 2020, PT I, 2020, 12506 : 654 - 671
  • [50] A semantic guide-based embedding method for knowledge graph completion
    Zhang, Jinglin
    Shen, Bo
    Wang, Tao
    Zhong, Yu
    EXPERT SYSTEMS, 2024, 41 (08)