Modeling of electrospun PVDF/LiCl nanogenerator by the energy approach method: determining piezoelectric constant

被引:27
作者
Mokhtari, F. [1 ,2 ]
Latifi, M. [1 ,2 ]
Shamshirsaz, M. [3 ]
Khelghatdoost, M. [3 ]
Rahmani, S. [4 ]
机构
[1] Amirkabir Univ Technol, Text Engn Dept, Textile Excellence Ctr, Tehran, Iran
[2] Amirkabir Univ Technol, Text Engn Dept, Res Ctr, Tehran, Iran
[3] Amirkabir Univ Technol, New Technol Res Ctr, Tehran, Iran
[4] Amirkabir Univ Technol, Dept Polymer Engn & Color Technol, Tehran, Iran
关键词
Electrospun PVDF; LiCl nanogenerator; finite element method; energy approach; piezoelectric; coupling coefficient;
D O I
10.1080/00405000.2017.1300219
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Increasing demands forharvesting energy from other sources of energy than fossil fuel and oil haveled to an upsurge of interest in nano-structured materials such as piezoelectric nanofibers and nanowebs to harvest energy from environmental movements. Previous research introduced a suitable nanogenerator package to have higher output voltage needless of the post-treatment process. Electrospinning of PVDF (polyvinylidene fluoride) with LiCl (lithium chloride) increases the beta-crystalline phase and thus piezoelectric effect. This article presentsan FEM (finite element method) model for the electrospun PVDF/LiCl nanogenerator to determine the piezoelectric constant base on the energy approach method. An experimental and analytical procedure has been developed to determine the piezoelectric coupling coefficient and results validation. The nanogenerator package was modeled as a multilayer structure. The excitation method for the nanogenerator package was dropping a ball on the sample from different heights. The determinations of electrospun nanogenerator coupling coefficients are an important factor in the final application of these types of nanogenerators that have not beenstudied yet.
引用
收藏
页码:1917 / 1925
页数:9
相关论文
共 16 条
[1]   Finite element modeling of functionally graded piezoelectric harvesters [J].
Amini, Y. ;
Emdad, H. ;
Farid, M. .
COMPOSITE STRUCTURES, 2015, 129 :165-176
[2]  
Ashish M., 2010, COMPOS STRUCT, V92, P436
[3]   Precise measurement of the transverse piezoelectric coefficient for thin films on anisotropic substrate [J].
Chun, Doo-Man ;
Sato, Masashi ;
Kanno, Isaku .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
[4]  
Fujihara K, 2005, INTRO ELECTROSPINNIN, V90
[5]   Performance enhancement of PEMC liquid level sensor subjected to environmental temperature variation [J].
Kashi, A. A. ;
Zamani, M. ;
Shamshirsaz, M. ;
Maroufi, M. .
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2014, 80 (03) :541-550
[6]  
Kranthi Kumar B, 2012, INT J ENG SCI TECHNO, V4, P115
[7]   In-plane excitation of thin silicon cantilevers using piezoelectric thin films [J].
Leighton, Glenn J. T. ;
Kirby, Paul B. ;
Fox, Colin H. J. .
APPLIED PHYSICS LETTERS, 2007, 91 (18)
[8]   FERROELECTRIC POLYMERS [J].
LOVINGER, AJ .
SCIENCE, 1983, 220 (4602) :1115-1121
[9]   The simulation of low-velocity impact on composite laminates with the damage model based on strain [J].
Ma, Chunhao ;
Xu, Fei .
ADVANCES IN FRACTURE AND DAMAGE MECHANICS XI, 2013, 525-526 :393-+
[10]   Advances in electrospinning: The production and application of nanofibres and nanofibrous structures [J].
Mokhtari, F. ;
Salehi, M. ;
Zamani, F. ;
Hajiani, F. ;
Zeighami, F. ;
Latifi, M. .
TEXTILE PROGRESS, 2016, 48 (03) :119-219