Hermite-Hadamard-Fejer Inequality Related to Generalized Convex Functions via Fractional Integrals

被引:24
作者
Delavar, M. Rostamian [1 ]
Aslani, S. Mohammadi [2 ]
De La Sen, M. [3 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
[2] Islamic Azad Univ, Karaj Branch, Dept Math, Karaj, Iran
[3] Univ Basque Country, Inst Res & Dev Proc, Campus Leioa,Aptdo 644, Bilbao 48080, Spain
关键词
D O I
10.1155/2018/5864091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with Hermite-Hadamard-Fejer inequality for (eta(1), eta(2))-convex functions via fractional integrals. Some mid-point and trapezoid type inequalities related to Hermite-Hadamard inequality when the absolute value of derivative of considered function is(eta(1), eta(2))-convex functions are obtained. Furthermore, a refinement for classic Hermite-Hadamard inequality via fractional integrals is given when a positive (eta(1), eta(2))-convex function is increasing.
引用
收藏
页数:10
相关论文
共 13 条
[1]  
Aslani SM, 2018, J INEQUAL SPEC FUNCT, V9, P17
[2]   INEQUALITIES OF FEJER TYPE RELATED TO GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS [J].
Aslani, S. Mohammadi ;
Delavar, M. Rostamian ;
Vaezpour, S. M. .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (01) :38-49
[3]   WHAT IS INVEXITY [J].
BENISRAEL, A ;
MOND, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :1-9
[4]   Some generalizations of Hermite-Hadamard type inequalities [J].
Delavar, M. Rostamian ;
De La Sen, M. .
SPRINGERPLUS, 2016, 5
[5]   ON η-CONVEXITY [J].
Delavar, Mohsen Rostamian ;
Dragomir, Silvestru Sever .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01) :203-216
[6]   ON φ-CONVEX FUNCTIONS [J].
Gordji, M. Eshaghi ;
Delavar, M. Rostamian ;
De La Sen, M. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (01) :173-183
[7]  
Gorenflo R., 1997, FRACTALS FRACTIONAL
[8]  
Hanson M. A., 1987, Journal of Information & Optimization Sciences, V8, P201
[9]   GENERALIZATION OF INEQUALITIES ANALOGOUS TO HERMITE HADAMARD INEQUALITY VIA FRACTIONAL INTEGRALS [J].
Iqbal, Muhammad ;
Bhatti, Muhammad Iqbal ;
Nazeer, Kiran .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) :707-716
[10]  
Iscan I. ., 2013, American Journal of Mathematical Analysis, V1, P33, DOI [10.48550/arXiv.1204.0272, DOI 10.48550/ARXIV.1204.0272]