The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations

被引:295
作者
Kozono, H [1 ]
Ogawa, T
Taniuchi, Y
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
[3] Shinshu Univ, Dept Math Sci, Matsumoto, Nagano 3908621, Japan
关键词
D O I
10.1007/s002090100332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the critical Sobolev inequalities in the Besov spaces with the logarithmic form such as Brozis-Gallouet-Wainger and Beale-Kato-Majda. As an application of those inequalities, the regularity problem under the critical condition to the Navier-Stokes equations, the Euler equations in R-n and the gradient flow to the harmonic map to the sphere are discussed. Namely the Serrin-Ohyama type regularity criteria are improved in the terms of the Besov spaces.
引用
收藏
页码:251 / 278
页数:28
相关论文
共 41 条
[2]  
[Anonymous], HARMONIC ANAL
[3]  
[Anonymous], ADV DIFFERENTIAL EQU
[4]   TRANSPORT-EQUATIONS RELATIVE TO NON-LIPSCHITZ VECTOR-FIELDS AND FLUID-MECHANICS [J].
BAHOURI, H ;
CHEMIN, JY .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (02) :159-181
[5]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[6]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[7]  
BREZIS H, 1980, COMMUN PART DIFF EQ, V5, P773
[9]  
Chemin J.-Y., 1998, OXFORD LECT SERIES M, V14
[10]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103