Dynamics of Pristine Graphite and Graphene at an Air-Water Interface

被引:13
|
作者
Goggin, David M. [1 ]
Samaniuk, Joseph R. [1 ]
机构
[1] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
graphene; colloids; interfacial processes; Langmuir films; self-assembly; TRANSPARENT CONDUCTIVE FILMS; UNDULATED CONTACT LINE; CAPILLARY FORCES; FLUID INTERFACE; RAMAN-SPECTROSCOPY; OXIDE SHEETS; PARTICLES; RHEOLOGY; MONOLAYERS; LAYERS;
D O I
10.1002/aic.16112
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We examine the dynamics and morphology of graphitic films at an air-water interface in a Langmuir trough by varying interfacial surface coverage, by observing in situ interfacial structure, and by characterizing interfacial structure of depositions on mica substrates. In situ interfacial structure is visualized with Brewster angle microscopy and depositions of the interface are characterized with atomic force microscopy and field-emission scanning electron microscopy. Compression/expansion curves exhibit a monotonically decreasing surface pressure between consecutive compressions, but demonstrate a "rebound" of hysteretic behavior when the interface is allowed to relax between consecutive compressions. This dynamic results from a competition between consolidation of the interface via agglomeration of particles or the stacking of graphene sheets, and a thermally-driven relaxation where nanometer-thick particles are able to overcome capillary interactions. These results are especially relevant to applications where functional films with controlled conductivity and transparency may be produced via liquid-phase deposition methods. (C) 2018 American Institute of Chemical Engineers
引用
收藏
页码:3177 / 3187
页数:11
相关论文
共 50 条
  • [41] Bronsted basicity of the air-water interface
    Mishra, Himanshu
    Enami, Shinichi
    Nielsen, Robert J.
    Stewart, Logan A.
    Hoffmann, Michael R.
    Goddard, William A., III
    Colussi, Agustin J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) : 18679 - 18683
  • [42] Polymer Behavior at the Air-Water Interface
    Ligia Gargallo
    MRS Bulletin, 2010, 35 : 615 - 622
  • [43] Chiral recognition at the air-water interface
    Ariga, Katsuhiko
    Michinobu, Tsuyoshi
    Nakanishi, Takashi
    Hill, Jonathan P.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2008, 13 (1-2) : 23 - 30
  • [44] DNA hybridization at the air-water interface
    Ebara, Y
    Mizutani, K
    Okahata, Y
    LANGMUIR, 2000, 16 (06) : 2416 - 2418
  • [45] Crystallization of a polyphosphoester at the air-water interface
    Hasan, Nazmul
    Schwieger, Christian
    Tee, Hisaschi T.
    Wurm, Frederik R.
    Busse, Karsten
    Kressler, Joerg
    EUROPEAN POLYMER JOURNAL, 2018, 101 : 350 - 357
  • [46] Hydroxide anion at the air-water interface
    Mundy, Christopher J.
    Kuo, I-Feng W.
    Tuckerman, Mark E.
    Lee, Hee-Seung
    Tobias, Douglas J.
    CHEMICAL PHYSICS LETTERS, 2009, 481 (1-3) : 2 - 8
  • [47] POLYDIMETHYLSILOXANE MONOLAYERS AT AN AIR-WATER INTERFACE
    KAKIHARA, Y
    HIMMELBL.DM
    SCHECHTE.RS
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1969, 30 (02) : 200 - &
  • [48] MONOMOLECULAR FILMS AT AIR-WATER INTERFACE
    CADENHEA.DA
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1968, 60 (05): : 6 - &
  • [49] Chemistry at the interface: Chemical transformations at the air-water interface
    Ehrenhauser, Franz S.
    Heath, Aubrey A.
    Liyana-Arachchi, Thilanga P.
    Wornat, Mary J.
    Hung, Francisco R.
    Herckes, Pierre R.
    Valsaraj, Kalliat T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [50] Revisiting the Thickness of the Air-Water Interface from Two Extremes of Interface Hydrogen Bond Dynamics
    Huang, Gang
    Huang, Jie
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (20) : 9107 - 9115