Δ03-determinacy, comprehension and induction

被引:18
作者
Medsalem, Medyahya Ould [1 ]
Tanaka, Kazuyuki [1 ]
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
关键词
WEAK AXIOMS; DETERMINACY; SUBSYSTEMS;
D O I
10.2178/jsl/1185803618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that each of Delta(1)(3)-CA(0) + Sigma(1)(3)-IND and Pi(1)(2)-CA(0)+Pi(1)(3)-Tl proves Delta(0)(3)-Det and that neither Sigma(1)(3)-IND nor Pi(1)(3)-Tl can be dropped. We also show that neither Delta(1)(3)-CA(0) + Sigma(1)(infinity)-IND nor Pi(1)(2)-CA(0) + Pi(1)(infinity)-Tl proves Sigma(0)(3)-Det. Moreover, we prove that none of Delta(1)(2)-CA(0). Sigma(1)(3)-IND and Pi(1)(2)-Tl is provable in Delta(1)(1)-Det(0) = ACA(0) + A(1)(1)-Det.
引用
收藏
页码:452 / 462
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 1966, Topology
[2]  
Friedman H.M., 1971, Ann. Math. Log, V2, P325, DOI [DOI 10.1016/0003-4843(71)90018-0, 10.1016/0003-4843(71)90018-0]
[3]  
GERHARD J, 1999, ANN PURE APPL LOGIC, V97, P221
[4]   BASIS RESULT FOR SIGMA-3(0) SETS OF REALS WITH AN APPLICATION TO MINIMAL COVERS [J].
HARRINGTON, LA ;
KECHRIS, AS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (02) :445-448
[5]  
HEINATSCH C, UNPUB DETERMINACY ST
[6]  
Simpson S.G., 1999, Subsystems of second order arithmetic
[7]  
Steel J.R., 1977, Determinateness and Subsystems of Analysis
[8]   WEAK AXIOMS OF DETERMINACY AND SUBSYSTEMS OF ANALYSIS II (SIGMA-2(0) GAMES) [J].
TANAKA, K .
ANNALS OF PURE AND APPLIED LOGIC, 1991, 52 (1-2) :181-193
[9]   WEAK AXIOMS OF DETERMINACY AND SUBSYSTEMS OF ANALYSIS .1. DELTA-20 GAMES [J].
TANAKA, K .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1990, 36 (06) :481-491
[10]  
Tanaka K., 1986, Ph.D. thesis