Leveraging artificial intelligence to predict ERG gene fusion status in prostate cancer

被引:11
作者
Dadhania, Vipulkumar [1 ]
Gonzalez, Daniel [2 ]
Yousif, Mustafa [1 ,3 ]
Cheng, Jerome [1 ]
Morgan, Todd M. [4 ]
Spratt, Daniel E. [5 ]
Reichert, Zachery R. [6 ]
Mannan, Rahul [7 ]
Wang, Xiaoming [7 ]
Chinnaiyan, Anya [7 ]
Cao, Xuhong [7 ]
Dhanasekaran, Saravana M. [7 ]
Chinnaiyan, Arul M. [1 ,4 ,7 ,8 ,9 ]
Pantanowitz, Liron [1 ,8 ]
Mehra, Rohit [1 ,7 ,8 ]
机构
[1] Univ Michigan, Sch Med, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Jackson Mem Hosp, Dept Pathol & Lab Med, Miami, FL 33136 USA
[3] Vanderbilt Univ, Med Ctr, Dept Pathol, Nashville, TN 37232 USA
[4] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI USA
[5] Case Western Reserve Univ, Univ Hosp Seidman Canc Ctr, Dept Radiat Oncol, Sch Med, Cleveland, OH USA
[6] Univ Michigan, Dept Med Oncol, Sch Med, Ann Arbor, MI USA
[7] Michigan Ctr Translat Pathol, Ann Arbor, MI 48109 USA
[8] Michigan Med, Rogel Canc Ctr, Ann Arbor, MI 48109 USA
[9] Howard Hughes Med Inst, Ann Arbor, MI USA
关键词
Prostate cancer; ERG; Deep learning; Artificial intelligence; Gene fusion; Adenocarcinoma; Whole slide imaging; TMPRSS2; ABERRATIONS; VALIDATION; EXPRESSION; DIAGNOSIS; BIOPSIES; IMAGES;
D O I
10.1186/s12885-022-09559-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background TMPRSS2-ERG gene rearrangement, the most common E26 transformation specific (ETS) gene fusion within prostate cancer, is known to contribute to the pathogenesis of this disease and carries diagnostic annotations for prostate cancer patients clinically. The ERG rearrangement status in prostatic adenocarcinoma currently cannot be reliably identified from histologic features on H&E-stained slides alone and hence requires ancillary studies such as immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) or next generation sequencing (NGS) for identification. MethodsObjective We accordingly sought to develop a deep learning-based algorithm to identify ERG rearrangement status in prostatic adenocarcinoma based on digitized slides of H&E morphology alone. Design Setting, and Participants: Whole slide images from 392 in-house and TCGA cases were employed and annotated using QuPath. Image patches of 224 x 224 pixel were exported at 10 x, 20 x, and 40 x for input into a deep learning model based on MobileNetV2 convolutional neural network architecture pre-trained on ImageNet. A separate model was trained for each magnification. Training and test datasets consisted of 261 cases and 131 cases, respectively. The output of the model included a prediction of ERG-positive (ERG rearranged) or ERG-negative (ERG not rearranged) status for each input patch. Outcome measurements and statistical analysis: Various accuracy measurements including area under the curve (AUC) of the receiver operating characteristic (ROC) curves were used to evaluate the deep learning model. Results and Limitations All models showed similar ROC curves with AUC results ranging between 0.82 and 0.85. The sensitivity and specificity of these models were 75.0% and 83.1% (20 x model), respectively. Conclusions A deep learning-based model can successfully predict ERG rearrangement status in the majority of prostatic adenocarcinomas utilizing only H&E-stained digital slides. Such an artificial intelligence-based model can eliminate the need for using extra tumor tissue to perform ancillary studies in order to assess for ERG gene rearrangement in prostatic adenocarcinoma.
引用
收藏
页数:9
相关论文
共 42 条
[1]   The Molecular Taxonomy of Primary Prostate Cancer [J].
Abeshouse, Adam ;
Ahn, Jaeil ;
Akbani, Rehan ;
Ally, Adrian ;
Amin, Samirkumar ;
Andry, Christopher D. ;
Annala, Matti ;
Aprikian, Armen ;
Armenia, Joshua ;
Arora, Arshi ;
Auman, J. Todd ;
Balasundaram, Miruna ;
Balu, Saianand ;
Barbieri, Christopher E. ;
Bauer, Thomas ;
Benz, Christopher C. ;
Bergeron, Alain ;
Beroukhim, Rameen ;
Berrios, Mario ;
Bivol, Adrian ;
Bodenheimer, Tom ;
Boice, Lori ;
Bootwalla, Moiz S. ;
dos Reis, Rodolfo Borges ;
Boutros, Paul C. ;
Bowen, Jay ;
Bowlby, Reanne ;
Boyd, Jeffrey ;
Bradley, Robert K. ;
Breggia, Anne ;
Brimo, Fadi ;
Bristow, Christopher A. ;
Brooks, Denise ;
Broom, Bradley M. ;
Bryce, Alan H. ;
Bubley, Glenn ;
Burks, Eric ;
Butterfield, Yaron S. N. ;
Button, Michael ;
Canes, David ;
Carlotti, Carlos G. ;
Carlsen, Rebecca ;
Carmel, Michel ;
Carroll, Peter R. ;
Carter, Scott L. ;
Cartun, Richard ;
Carver, Brett S. ;
Chan, June M. ;
Chang, Matthew T. ;
Chen, Yu .
CELL, 2015, 163 (04) :1011-1025
[2]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[3]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[4]   Computerized Image-Based Detection and Grading of Lymphocytic Infiltration in HER2+Breast Cancer Histopathology [J].
Basavanhally, Ajay Nagesh ;
Ganesan, Shridar ;
Agner, Shannon ;
Monaco, James Peter ;
Feldman, Michael D. ;
Tomaszewski, John E. ;
Bhanot, Gyan ;
Madabhushi, Anant .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (03) :642-653
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]   Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma [J].
Cheng, Jun ;
Han, Zhi ;
Mehra, Rohit ;
Shao, Wei ;
Cheng, Michael ;
Feng, Qianjin ;
Ni, Dong ;
Huang, Kun ;
Cheng, Liang ;
Zhang, Jie .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Deep learning links histology, molecular signatures and prognosis in cancer [J].
Coudray, Nicolas ;
Tsirigos, Aristotelis .
NATURE CANCER, 2020, 1 (08) :755-757
[8]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]  
Engel KB, 2011, ARCH PATHOL LAB MED, V135, P537, DOI 10.1043/2010-0702-RAIR.1