Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients

被引:60
作者
Kaandorp, Misha P. T. [1 ,2 ,3 ]
Barbieri, Sebastiano [4 ]
Klaassen, Remy [5 ]
van Laarhoven, Hanneke W. M. [5 ]
Crezee, Hans [1 ]
While, Peter T. [2 ,3 ]
Nederveen, Aart J. [1 ]
Gurney-Champion, Oliver J. [1 ]
机构
[1] Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Canc Ctr Amsterdam, Amsterdam, Netherlands
[2] St Olavs Univ Hosp, Dept Radiol & Nucl Med, Postbox 3250 Torgarden, N-7006 Trondheim, Norway
[3] NTNU Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, Trondheim, Norway
[4] UNSW, Ctr Big Data Res Hlth, Sydney, NSW, Australia
[5] Univ Amsterdam, Amsterdam UMC, Canc Ctr Amsterdam, Dept Med Oncol, Amsterdam, Netherlands
关键词
deep neural network; diffusion-weighted magnetic resonance imaging; intravoxel incoherent motion; IVIM; pancreatic cancer; unsupervised physics-informed deep learning; FITTING METHODS; B-VALUES; DIFFUSION; LIVER; MRI; BIOMARKERS; PARAMETERS; ALGORITHM; PERFUSION;
D O I
10.1002/mrm.28852
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Earlier work showed that IVIM-NETorig, an unsupervised physics-informed deep neural network, was faster and more accurate than other state-of-the-art intravoxel-incoherent motion (IVIM) fitting approaches to diffusion-weighted imaging (DWI). This study presents a substantially improved version, IVIM-NEToptim, and characterizes its superior performance in pancreatic cancer patients. Method: In simulations (signal-to-noise ratio [SNR] = 20), the accuracy, independence, and consistency of IVIM-NET were evaluated for combinations of hyperparameters (fit S0, constraints, network architecture, number of hidden layers, dropout, batch normalization, learning rate), by calculating the normalized root-mean-square error (NRMSE), Spearman's rho, and the coefficient of variation (CVNET), respectively. The best performing network, IVIM-NEToptim was compared to least squares (LS) and a Bayesian approach at different SNRs. IVIM-NEToptim's performance was evaluated in an independent dataset of 23 patients with pancreatic ductal adenocarcinoma. Fourteen of the patients received no treatment between two repeated scan sessions and nine received chemoradiotherapy between the repeated sessions. Intersession within-subject standard deviations (wSD) and treatment-induced changes were assessed. Results: In simulations (SNR = 20), IVIM-NEToptim outperformed IVIM-NETorig in accuracy (NRMSE(D) = 0.177 vs 0.196; NMRSE(f) = 0.220 vs 0.267; NMRSE(D*) = 0.386 vs 0.393), independence (rho(D*, f) = 0.22 vs 0.74), and consistency (CVNET(D) = 0.013 vs 0.104; CVNET(f) = 0.020 vs 0.054; CVNET(D*) = 0.036 vs 0.110). IVIM-NEToptim showed superior performance to the LS and Bayesian approaches at SNRs < 50. In vivo, IVIM-NEToptim showed significantly less noisy parameter maps with lower wSD for D and f than the alternatives. In the treated cohort, IVIM-NEToptim detected the most individual patients with significant parameter changes compared to day-to-day variations. Conclusion: IVIM-NEToptim is recommended for accurate, informative, and consistent IVIM fitting to DWI data.
引用
收藏
页码:2250 / 2265
页数:16
相关论文
共 52 条
[1]   MoDL-MUSSELS: Model-Based Deep Learning for Multishot Sensitivity-Encoded Diffusion MRI [J].
Aggarwal, Hemant K. ;
Mani, Merry P. ;
Jacob, Mathews .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (04) :1268-1277
[2]   Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases [J].
Andreou, A. ;
Koh, D. M. ;
Collins, D. J. ;
Blackledge, M. ;
Wallace, T. ;
Leach, M. O. ;
Orton, M. R. .
EUROPEAN RADIOLOGY, 2013, 23 (02) :428-434
[3]   Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI [J].
Barbieri, Sebastiano ;
Gurney-Champion, Oliver J. ;
Klaassen, Remy ;
Thoeny, Harriet C. .
MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (01) :312-321
[4]   Comparison of Intravoxel Incoherent Motion Parameters across MR Imagers and Field Strengths: Evaluation in Upper Abdominal Organs [J].
Barbieri, Sebastiano ;
Donati, Olivio F. ;
Froehlich, Johannes M. ;
Thoeny, Harriet C. .
RADIOLOGY, 2016, 279 (03) :784-794
[5]   Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs [J].
Barbieri, Sebastiano ;
Donati, Olivio F. ;
Froehlich, Johannes M. ;
Thoeny, Harriet C. .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (05) :2175-2184
[6]   Applications of the Repeatability of Quantitative Imaging Biomarkers: A Review of Statistical Analysis of Repeat Data Sets [J].
Barnhart, Huiman X. ;
Barboriak, Daniel P. .
TRANSLATIONAL ONCOLOGY, 2009, 2 (04) :231-235
[7]   Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T [J].
Bertleff, Marco ;
Domsch, Sebastian ;
Weingaertner, Sebastian ;
Zapp, Jascha ;
O'Brien, Kieran ;
Barth, Markus ;
Schad, Lothar R. .
NMR IN BIOMEDICINE, 2017, 30 (12)
[8]  
Bland JM, 1996, BRIT MED J, V313, P744
[9]   Intravoxel Incoherent Motion (IVIM) MR Imaging of Colorectal Liver Metastases: Are We Only Looking at Tumor Necrosis? [J].
Chiaradia, Melanie ;
Baranes, Laurence ;
Jeanne Tran Van Nhieu ;
Vignaud, Alexandre ;
Laurent, Alexis ;
Decaens, Thomas ;
Charles-Nelson, Anais ;
Brugieres, Pierre ;
Katsahian, Sandrine ;
Djabbari, Marjane ;
Deux, Jean-Francois ;
Sobhani, Iradj ;
Karoui, Mehdi ;
Rahmouni, Alain ;
Luciani, Alain .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (02) :317-325
[10]  
Cho GY, 2017, EUR J RADIOL OPEN, V4, P101, DOI 10.1016/j.ejro.2017.07.002