Pandemics of mutating virus and society: a multi-scale active particles approach

被引:14
作者
Bellomo, N. [1 ,2 ,3 ]
Burini, D. [4 ]
Outada, N. [5 ,6 ]
机构
[1] Univ Granada, Math, Granada 18071, Spain
[2] Politecn Torino, Math Sci, I-10129 Turin, Italy
[3] IMATI CNR, Pavia, Italy
[4] Univ Perugia, Perugia, Italy
[5] Fac Sci Semlalia UCA, LMDP, Marrakech, Morocco
[6] IRD SU, UMMISCO, Paris, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2022年 / 380卷 / 2224期
关键词
COVID-19; multiscale; immune competition; variants; vaccination; KINETIC-THEORY; PEDESTRIAN DYNAMICS; DISEASE CONTAGION; MODEL; COVID-19; EPIDEMIC;
D O I
10.1098/rsta.2021.0161
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents, within a multiscale framework, a search for a unified approach towards modelling the COVID-19 pandemic, from contagion to within-host dynamics. The modelling is focused on vaccination and therapeutical actions in general. The first part of our article is devoted to understanding the complex features of the system and to the design of a modelling rationale. Then, the modelling approach follows mainly focused on the competition between the proliferating virus and the immune system. Modelling considers also the action of vaccination plans related to the onset of new variants.This article is part of the theme issue 'Kinetic exchange models of societies and economies'.
引用
收藏
页数:14
相关论文
共 31 条
  • [1] Disease contagion models coupled to crowd motion and mesh-free simulation
    Abdul Salam, Parveena Shamim
    Bock, Wolfgang
    Klar, Axel
    Tiwari, Sudarshan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (06) : 1277 - 1295
  • [2] A multiscale network-based model of contagion dynamics: Heterogeneity, spatial distancing and vaccination
    Aguiar, Maira
    Dosi, Giovanni
    Knopoff, Damian A.
    Enrica Virgillito, Maria
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (12) : 2425 - 2454
  • [3] The proximal origin of SARS-CoV-2
    Andersen, Kristian G.
    Rambaut, Andrew
    Lipkin, W. Ian
    Holmes, Edward C.
    Garry, Robert F.
    [J]. NATURE MEDICINE, 2020, 26 (04) : 450 - 452
  • [4] Avishai Bernard., 2020, The New Yorker
  • [5] Bellomo N, 2020, MATH MOD METH APPL S, V30, P1591, DOI [10.1142/S0218202520500323, 10.1142/s0218202520500323]
  • [6] What is life? A perspective of the mathematical kinetic theory of active particles
    Bellomo, Nicola
    Burini, Diletta
    Dosi, Giovanni
    Gibelli, Livio
    Knopoff, Damian
    Outada, Nisrine
    Terna, Pietro
    Virgillito, Maria Enrica
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (09) : 1821 - 1866
  • [7] The challenges of modeling and forecasting the spread of COVID-19
    Bertozzi, Andrea L.
    Franco, Elisa
    Mohler, George
    Short, Martin B.
    Sledge, Daniel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) : 16732 - 16738
  • [8] Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations
    Boscheri, Walter
    Dimarco, Giacomo
    Pareschi, Lorenzo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (06) : 1059 - 1097
  • [9] A multiscale view of nonlinear diffusion in biology: From cells to tissues
    Burini, D.
    Chouhad, N.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (04) : 791 - 823
  • [10] Coronavirus vaccines: key questions
    Callaway, Ewen
    [J]. NATURE, 2020, 579 (7800) : 481 - 481