Porous CuxCoyS Supraparticles for In Vivo Telomerase Imaging and Reactive Oxygen Species Generation

被引:17
|
作者
Li, Si [1 ,2 ]
Xu, Liguang [1 ,2 ]
Hao, Changlong [1 ,2 ]
Sun, Maozhong [1 ,2 ]
Wu, Xiaoling [1 ,2 ]
Kuang, Hua [1 ,2 ]
Xu, Chuanlai [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Int Joint Res Lab Biointerface & Biodetect, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
bioimaging; porous materials; reactive oxygen species; supraparticles; telomerase; MONODISPERSE; CATALYSTS; CELLS;
D O I
10.1002/anie.201911770
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we successfully synthesized CuxCoyS supraparticles (SPs) on the nanoscale featuring multiple pores inside and strong absorption from 400 to 900 nm. Porous CuxCoyS SPs produced the highest reactive oxygen species (ROS) yield (1.39) when illuminated with near-infrared (NIR) light. Furthermore, we demonstrated that CuxCoyS SPs could be used to identify cancer cells through intracellular telomerase-responsive fluorescence (FL) imaging in living cells. Because the CuxCoyS SPs were associated with telomerase-responsive bioimaging and high ROS production, they can be efficiently used in the diagnosis and therapy of tumors with high selectivity and excellent therapeutic effects in vivo. This study provides a new vision for the creation of multifunctional SPs, which can be used as cellular sensors and control tools for pathologies across a broad range of biological systems.
引用
收藏
页码:19067 / 19072
页数:6
相关论文
共 50 条
  • [31] Synchronized generation of reactive oxygen species with the cell cycle
    Takahashi, Y
    Ogra, Y
    Suzuki, KT
    LIFE SCIENCES, 2004, 75 (03) : 301 - 311
  • [32] Generation of reactive oxygen species by human mesothelioma cells
    Kahlos, K
    Pitkänen, S
    Hassinen, I
    Linnainmaa, K
    Kinnula, V
    BRITISH JOURNAL OF CANCER, 1999, 80 (1-2) : 25 - 31
  • [33] REACTIVE OXYGEN SPECIES (ROS) GENERATION AND DETOXIFYING IN PLANTS
    Saed-Moucheshi, Armin
    Shekoofa, Avat
    Pessarakli, Mohammad
    JOURNAL OF PLANT NUTRITION, 2014, 37 (10) : 1573 - 1585
  • [34] A Simple Ex Vivo Semiquantitative Fluorescent Imaging Utilizing Planar Laser Scanner: Detection of Reactive Oxygen Species Generation in Mouse Brain and Kidney
    Hosoi, Rie
    Sato, Sota
    Shukuri, Miho
    Fujii, Yuka
    Todoroki, Kenichiro
    Arano, Yasushi
    Sakai, Toshihiro
    Inoue, Osamu
    MOLECULAR IMAGING, 2019, 18
  • [35] Generation of reactive oxygen species in vitro by Malassezia yeasts
    Spaeter, S.
    Hipler, U. -C.
    Haustein, U. -F.
    Nenoff, P.
    HAUTARZT, 2009, 60 (02): : 122 - 127
  • [36] Endogenous mechanisms of reactive oxygen species (ROS) generation
    Sarniak, Agata
    Lipinska, Joanna
    Tytman, Karol
    Lipinska, Stanislawa
    POSTEPY HIGIENY I MEDYCYNY DOSWIADCZALNEJ, 2016, 70 : 1150 - 1164
  • [37] Regulation of reactive oxygen species generation in cell signaling
    Bae, Yun Soo
    Oh, Hyunjin
    Rhee, Sue Goo
    Do Yoo, Young
    MOLECULES AND CELLS, 2011, 32 (06) : 491 - 509
  • [38] Photoelectrochemical Reactive Oxygen Species Generation for Organic Conversion
    Miao, Jiaming
    Guo, Hu
    Zhang, Kan
    CHEMPHOTOCHEM, 2023, 7 (08)
  • [39] The effect of roxithromycin on the generation of reactive oxygen species in vitro
    Akamatsu, H
    Nishijima, S
    Akamatsu, M
    Kurokawa, I
    Sasaki, H
    Asada, Y
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 1996, 24 (01) : 27 - 32
  • [40] Reactive Oxygen Species (ROS) generation by lunar simulants
    Kaur, Jasmeet
    Rickman, Douglas
    Schoonen, Martin A.
    ACTA ASTRONAUTICA, 2016, 122 : 196 - 208