Porous CuxCoyS Supraparticles for In Vivo Telomerase Imaging and Reactive Oxygen Species Generation

被引:17
|
作者
Li, Si [1 ,2 ]
Xu, Liguang [1 ,2 ]
Hao, Changlong [1 ,2 ]
Sun, Maozhong [1 ,2 ]
Wu, Xiaoling [1 ,2 ]
Kuang, Hua [1 ,2 ]
Xu, Chuanlai [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Int Joint Res Lab Biointerface & Biodetect, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
bioimaging; porous materials; reactive oxygen species; supraparticles; telomerase; MONODISPERSE; CATALYSTS; CELLS;
D O I
10.1002/anie.201911770
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we successfully synthesized CuxCoyS supraparticles (SPs) on the nanoscale featuring multiple pores inside and strong absorption from 400 to 900 nm. Porous CuxCoyS SPs produced the highest reactive oxygen species (ROS) yield (1.39) when illuminated with near-infrared (NIR) light. Furthermore, we demonstrated that CuxCoyS SPs could be used to identify cancer cells through intracellular telomerase-responsive fluorescence (FL) imaging in living cells. Because the CuxCoyS SPs were associated with telomerase-responsive bioimaging and high ROS production, they can be efficiently used in the diagnosis and therapy of tumors with high selectivity and excellent therapeutic effects in vivo. This study provides a new vision for the creation of multifunctional SPs, which can be used as cellular sensors and control tools for pathologies across a broad range of biological systems.
引用
收藏
页码:19067 / 19072
页数:6
相关论文
共 50 条
  • [21] Reactive oxygen species generation and signaling in plants
    Tripathy, Baishnab Charan
    Oelmueller, Ralf
    PLANT SIGNALING & BEHAVIOR, 2012, 7 (12) : 1621 - 1633
  • [22] Reactive oxygen species generation in women with osteoporosis
    Stetkiewicz, Tomasz
    Makowski, Marcin
    Stachowiak, Grzegorz
    Polac, Ireneusz
    Surkont, Grzegorz
    Pertynski, Tomasz
    MENOPAUSE REVIEW-PRZEGLAD MENOPAUZALNY, 2007, 6 (04): : 239 - 243
  • [23] Intracellular generation of reactive oxygen species by mitochondria
    Nohl, H
    Gille, L
    Staniek, K
    BIOCHEMICAL PHARMACOLOGY, 2005, 69 (05) : 719 - 723
  • [24] Generation of reactive oxygen species by the faecal matrix
    Owen, RW
    Spiegelhalder, B
    Bartsch, H
    GUT, 2000, 46 (02) : 225 - 232
  • [25] Mechanisms of nanotoxicity: Generation of reactive oxygen species
    Fu, Peter P.
    Xia, Qingsu
    Hwang, Huey-Min
    Ray, Paresh C.
    Yu, Hongtao
    JOURNAL OF FOOD AND DRUG ANALYSIS, 2014, 22 (01) : 64 - 75
  • [26] Generation of reactive oxygen species by raphidophycean phytoplankton
    Oda, T
    Nakamura, A
    Shikayama, M
    Kawano, I
    Ishimatsu, A
    Muramatsu, T
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1997, 61 (10) : 1658 - 1662
  • [27] Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo
    Chu, Wenhua
    Chepetan, Andre
    Zhou, Dong
    Shoghi, Kooresh I.
    Xu, Jinbin
    Dugan, Laura L.
    Gropler, Robert J.
    Mintun, Mark A.
    Mach, Robert H.
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2014, 12 (25) : 4421 - 4431
  • [28] Mitochondria-Targeting BODIPY Probes for Imaging of Reactive Oxygen Species
    Ye, Yingsong
    Sun, Jiali
    Tang, Fang
    Xie, Ruijie
    Wang, Hui
    Ding, Aixiang
    Pan, Sijun
    Li, Lin
    ADVANCED SENSOR RESEARCH, 2023, 2 (09):
  • [29] Nucleotide receptor signalling and the generation of reactive oxygen species
    Guerra, Alma N.
    Gavala, Monica L.
    Chung, Hun Sun
    Bertics, Paul J.
    PURINERGIC SIGNALLING, 2007, 3 (1-2) : 39 - 51
  • [30] Ultraviolet Light Induced Generation of Reactive Oxygen Species
    de Jager, T. L.
    Cockrell, A. E.
    Du Plessis, S. S.
    ULTRAVIOLET LIGHT IN HUMAN HEALTH, DISEASES AND ENVIRONMENT, 2017, 996 : 15 - 23