On L2-Boundedness of h-Pseudodifferential Operators

被引:1
作者
Yang, Jie [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Xinjiang 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2021/6690963
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-a(h) be the h-pseudodifferential operators with symbol a. When a is an element of S-rho,1(m) and m = n(rho - 1)/2, it is well known that T-a(h) is not always bounded in L-2(R-n). In this paper, under the condition a(x, xi) is an element of L-infinity S-rho(n) (rho-1)/2 (omega), we show that T-a(h) is bounded on L-2.
引用
收藏
页数:5
相关论文
共 18 条
[1]   The boundedness of h-admissible Fourier integral operators on Bessel potential spaces [J].
Aid, Omar Farouk ;
Senoussaoui, Abderrahmane .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) :2125-2141
[2]   On the global LP boundedness of a general class of h-Fourier integral operators [J].
Aitemrar, Chafika Amel ;
Senoussaoui, Abderrahmane .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (04) :1726-1737
[3]   h-Admissible Fourier integral operators [J].
Aitemrar, Chafika Amel ;
Senoussaoui, Abderrahmane .
TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) :553-568
[4]   Global h Fourier integral operators with complex-valued phase functions [J].
Butler, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 :479-489
[5]   PSEUDODIFFERENTIAL OPERATORS WITH NONREGULAR SYMBOLS [J].
CHING, CH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 11 (02) :436-&
[6]   ON A CLASS OF h-FOURIER INTEGRAL OPERATORS [J].
Harrat, Chahrazed ;
Senoussaoui, Abderrahmane .
DEMONSTRATIO MATHEMATICA, 2014, 47 (03) :595-606
[7]  
HELFFER B, 1981, ANN I FOURIER, V31, P169
[8]   FUNCTIONAL CALCULATION BY THE MELLIN TRANSFORMATION AND ADMISSIBLE OPERATORS [J].
HELFFER, B ;
ROBERT, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 53 (03) :246-268
[9]  
Helffer B, 1984, AST RISQUE, V112
[10]   ON THE L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL-OPERATORS [J].
HIGUCHI, Y ;
NAGASE, M .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (01) :133-139