Random-matrix theory for the Lindblad master equation

被引:20
作者
Lange, Stefan [1 ,2 ]
Timm, Carsten [2 ,3 ]
机构
[1] Leibniz Assoc, Potsdam Inst Climate Impact Res PIK, POB 60 12 03, D-14412 Potsdam, Germany
[2] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Wurzburg Dresden Cluster Excellence Ct Qmat, D-01062 Dresden, Germany
关键词
ENERGY-LEVELS; STATISTICAL-THEORY; CHARACTERISTIC VECTORS; BORDERED MATRICES; ENSEMBLES;
D O I
10.1063/5.0033486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Open quantum systems with Markovian dynamics can be described by the Lindblad equation. The quantity governing the dynamics is the Lindblad superoperator. We apply random-matrix theory to this superoperator to elucidate its spectral properties. The distribution of eigenvalues and the correlations of neighboring eigenvalues are obtained for the cases of purely unitary dynamics, pure dissipation, and the physically realistic combination of unitary and dissipative dynamics.
引用
收藏
页数:17
相关论文
共 46 条
[31]   ON QUANTUM THEORY OF TRANSPORT PHENOMENA STEADY DIFFUSION [J].
NAKAJIMA, S .
PROGRESS OF THEORETICAL PHYSICS, 1958, 20 (06) :948-959
[32]  
Redfield AG., 1965, Advances in Magnetic and Optical Resonance, P1, DOI [10.1016/B978-1-4832-3114-3.50007-6, DOI 10.1016/B978-1-4832-3114-3.50007-6, 10.1016/b978-1-4832-3114-3.50007-6]
[33]   REPULSION OF ENERGY LEVELS IN COMPLEX ATOMIC SPECTRA [J].
ROSENZWEIG, N ;
PORTER, CE .
PHYSICAL REVIEW, 1960, 120 (05) :1698-1714
[34]   Spectral and steady-state properties of random Liouvillians [J].
Sa, Lucas ;
Ribeiro, Pedro ;
Prosen, Tomaz .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (30)
[35]   Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos [J].
Sa, Lucas ;
Ribeiro, Pedro ;
Prosen, Tomaz .
PHYSICAL REVIEW X, 2020, 10 (02)
[36]   General eigenvalue correlations for the real Ginibre ensemble [J].
Sommers, Hans-Juergen ;
Wieczorek, Waldemar .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (40)
[37]   Random transition-rate matrices for the master equation [J].
Timm, Carsten .
PHYSICAL REVIEW E, 2009, 80 (02)
[38]   STATISTICAL-MECHANICAL THEORY OF RANDOM FREQUENCY MODULATIONS AND GENERALIZED BROWNIAN MOTIONS [J].
TOKUYAMA, M ;
MORI, H .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :411-429
[39]   THE DYNAMICAL THEORY OF NUCLEAR INDUCTION [J].
WANGSNESS, RK ;
BLOCH, F .
PHYSICAL REVIEW, 1953, 89 (04) :728-739
[40]  
Wigner E.P., 1965, Statistical Theories of Spectra: Fluctuations, V1, P446