Random-matrix theory for the Lindblad master equation

被引:19
作者
Lange, Stefan [1 ,2 ]
Timm, Carsten [2 ,3 ]
机构
[1] Leibniz Assoc, Potsdam Inst Climate Impact Res PIK, POB 60 12 03, D-14412 Potsdam, Germany
[2] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Wurzburg Dresden Cluster Excellence Ct Qmat, D-01062 Dresden, Germany
关键词
ENERGY-LEVELS; STATISTICAL-THEORY; CHARACTERISTIC VECTORS; BORDERED MATRICES; ENSEMBLES;
D O I
10.1063/5.0033486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Open quantum systems with Markovian dynamics can be described by the Lindblad equation. The quantity governing the dynamics is the Lindblad superoperator. We apply random-matrix theory to this superoperator to elucidate its spectral properties. The distribution of eigenvalues and the correlations of neighboring eigenvalues are obtained for the cases of purely unitary dynamics, pure dissipation, and the physically realistic combination of unitary and dissipative dynamics.
引用
收藏
页数:17
相关论文
共 46 条
  • [1] Quantum chaos, irreversible classical dynamics, and random matrix theory
    Andreev, AV
    Agam, O
    Simons, BD
    Altshuler, BL
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (21) : 3947 - 3950
  • [2] [Anonymous], 1965, Advances in Magnetic and Optical Resonance
  • [3] [Anonymous], 1994, J. Amer. Math. Soc., DOI DOI 10.1090/S0894-0347-1994-1231689-0
  • [4] Bai ZD, 1997, ANN PROBAB, V25, P494
  • [5] GENERALIZED THEORY OF RELAXATION
    BLOCH, F
    [J]. PHYSICAL REVIEW, 1957, 105 (04): : 1206 - 1222
  • [6] CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS
    BOHIGAS, O
    GIANNONI, MJ
    SCHMIT, C
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (01) : 1 - 4
  • [7] Breuer H P., 2007, The Theory of Open Quantum Systems
  • [8] Davies E. B., 1976, QUANTUM THEORY OPEN
  • [9] Universal Spectra of Random Lindblad Operators
    Denisov, Sergey
    Laptyeva, Tetyana
    Tarnowski, Wojciech
    Chruscinski, Dariusz
    Zyczkowski, Karol
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (14)