EXACT TRAVELING WAVE SOLUTIONS OF A HIGHER-DIMENSIONAL NONLINEAR EVOLUTION EQUATION

被引:45
作者
Lee, Jonu [2 ]
Sakthivel, Rathinasamy [1 ]
Wazzan, Luwai [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Kyung Hee Univ, Coll Appl Sci, Yongin 446701, South Korea
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
来源
MODERN PHYSICS LETTERS B | 2010年 / 24卷 / 10期
关键词
Higher-dimensional nonlinear equation; traveling wave solutions; Exp-function method; extended Jacobi elliptic function method; modified tanh-coth method; EXP-FUNCTION METHOD; VARIATIONAL ITERATION METHOD; HOMOTOPY PERTURBATION METHOD; COMPLEXITON SOLUTIONS; SOLITON-SOLUTIONS; TANH;
D O I
10.1142/S0217984910023062
中图分类号
O59 [应用物理学];
学科分类号
摘要
The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh-coth method is implemented to obtain single soliton solutions where as the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.
引用
收藏
页码:1011 / 1021
页数:11
相关论文
共 50 条
[41]   The two variable (G′/G, 1/G) -expansion method for finding exact traveling wave solutions of the (3+1) - dimensional nonlinear potential Yu-Toda-Sasa-Fukuyama equation [J].
Zayed, E. M. E. ;
Ibrahim, S. A. Hoda .
PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013), 2013, 41 :388-392
[42]   Exp-function method for traveling wave solutions of nonlinear evolution equations [J].
Noor, Muhammad Aslam ;
Mohyud-Din, Syed Tauseef ;
Waheed, Asif ;
Al-Said, Eisa A. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) :477-483
[43]   New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation [J].
Khalfallah, Mohammed .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1169-1175
[44]   Exact Solitary Wave and Periodic Wave Solutions of a Class of Higher-Order Nonlinear Wave Equations [J].
Zhang, Lijun ;
Khalique, Chaudry Masood .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[45]   Investigation of Exact Solutions of Nonlinear Evolution Equations Using Unified Method [J].
Wang, Xiaoming ;
Javed, Shehbaz Ahmad ;
Majeed, Abdul ;
Kamran, Mohsin ;
Abbas, Muhammad .
MATHEMATICS, 2022, 10 (16)
[46]   A Method for Constructing Traveling Wave Solutions to Nonlinear Evolution Equations [J].
Juhong Ge ;
Cuncai Hua ;
Zhaosheng Feng .
Acta Applicandae Mathematicae, 2012, 118 :185-201
[47]   Traveling wave solutions for some coupled nonlinear evolution equations [J].
Seadawy, A. R. ;
El-Rashidy, K. .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (5-6) :1371-1379
[48]   A note on the traveling wave solutions of some nonlinear evolution equations [J].
Odabasi, Meryem ;
Misirli, Emine .
OPTIK, 2017, 142 :394-400
[49]   A Method for Constructing Traveling Wave Solutions to Nonlinear Evolution Equations [J].
Ge, Juhong ;
Hua, Cuncai ;
Feng, Zhaosheng .
ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) :185-201
[50]   A NOTE ON EXACT EXPLICIT TRAVELING WAVE SOLUTIONS FOR THE GENERALIZED B-EQUATION [J].
Deng, Xijun ;
Sun, Yuqiu ;
Xu, Dahai .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (02) :141-150