ASYMPTOTIC EQUIVALENCE FOR REGRESSION UNDER FRACTIONAL NOISE

被引:5
作者
Schmidt-Hieber, Johannes [1 ]
机构
[1] Leiden Univ, Math Inst, NL-2333 CA Leiden, Netherlands
基金
欧洲研究理事会;
关键词
Asymptotic equivalence; long memory; fractional Brownian motion; fractional Gaussian noise; fractional calculus; inverse problems; nonharmonic Fourier series; reproducing kernel Hilbert space (RKHS); stationarity; GAUSSIAN WHITE-NOISE; NONPARAMETRIC REGRESSION; BROWNIAN-MOTION; DENSITY-ESTIMATION; WAVELET SHRINKAGE; INVERSE PROBLEMS; RANDOM DESIGN; INTEGRATION; VOLATILITY;
D O I
10.1214/14-AOS1262
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider estimation of the regression function based on a model with equidistant design and measurement errors generated from a fractional Gaussian noise process. In previous literature, this model has been heuristically linked to an experiment, where the anti-derivative of the regression function is continuously observed under additive perturbation by a fractional Brownian motion. Based on a reformulation of the problem using reproducing kernel Hilbert spaces, we derive abstract approximation conditions on function spaces under which asymptotic equivalence between these models can be established and show that the conditions are satisfied for certain Sobolev balls exceeding some minimal smoothness. Furthermore, we construct a sequence space representation and provide necessary conditions for asymptotic equivalence to hold.
引用
收藏
页码:2557 / 2585
页数:29
相关论文
共 50 条
  • [31] VIBRATIONS OF A FINITE STRING UNDER A FRACTIONAL GAUSSIAN RANDOM NOISE
    Khalil, Zeina Mahdi
    Tudor, Ciprian A.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (01): : 191 - 208
  • [32] Relative asymptotic equivalence of evolution equations
    Leiva, H
    Rodrigues, HM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) : 4579 - 4590
  • [33] On the Asymptotic Equivalence of Circulant and Toeplitz Matrices
    Zhu, Zhihui
    Wakin, Michael B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (05) : 2975 - 2992
  • [34] ASYMPTOTIC EQUIVALENCE FOR LINEAR DIFFERENTIAL SYSTEMS
    Choi, Sung Kyu
    Koo, Namjip
    Lee, Keonhee
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (01): : 37 - 49
  • [35] EQUIVALENCE CRITERION FOR TWO ASYMPTOTIC FORMULAE
    Ishkin, Kh K.
    Marvanov, R., I
    UFA MATHEMATICAL JOURNAL, 2020, 12 (01): : 30 - 42
  • [36] Asymptotic equivalence of estimators of average derivatives
    Li, W
    ECONOMICS LETTERS, 1996, 52 (03) : 241 - 245
  • [37] On the asymptotic equivalence of a differential system with maxima
    Otrocol D.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (3): : 387 - 393
  • [38] The strong asymptotic equivalence and the generalized inverse
    Djurcic, D.
    Torgasev, A.
    Jesic, S.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (04) : 628 - 636
  • [39] The strong asymptotic equivalence and the generalized inverse
    D. Djurčić
    A. Torgašev
    S. Ješić
    Siberian Mathematical Journal, 2008, 49 : 628 - 636
  • [40] Permutation entropy of fractional Brownian motion and fractional Gaussian noise
    Zunino, L.
    Perez, D. G.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    PHYSICS LETTERS A, 2008, 372 (27-28) : 4768 - 4774