ASYMPTOTIC EQUIVALENCE FOR REGRESSION UNDER FRACTIONAL NOISE

被引:5
作者
Schmidt-Hieber, Johannes [1 ]
机构
[1] Leiden Univ, Math Inst, NL-2333 CA Leiden, Netherlands
基金
欧洲研究理事会;
关键词
Asymptotic equivalence; long memory; fractional Brownian motion; fractional Gaussian noise; fractional calculus; inverse problems; nonharmonic Fourier series; reproducing kernel Hilbert space (RKHS); stationarity; GAUSSIAN WHITE-NOISE; NONPARAMETRIC REGRESSION; BROWNIAN-MOTION; DENSITY-ESTIMATION; WAVELET SHRINKAGE; INVERSE PROBLEMS; RANDOM DESIGN; INTEGRATION; VOLATILITY;
D O I
10.1214/14-AOS1262
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider estimation of the regression function based on a model with equidistant design and measurement errors generated from a fractional Gaussian noise process. In previous literature, this model has been heuristically linked to an experiment, where the anti-derivative of the regression function is continuously observed under additive perturbation by a fractional Brownian motion. Based on a reformulation of the problem using reproducing kernel Hilbert spaces, we derive abstract approximation conditions on function spaces under which asymptotic equivalence between these models can be established and show that the conditions are satisfied for certain Sobolev balls exceeding some minimal smoothness. Furthermore, we construct a sequence space representation and provide necessary conditions for asymptotic equivalence to hold.
引用
收藏
页码:2557 / 2585
页数:29
相关论文
共 50 条
  • [21] Asymptotic distribution of data-driven smoothers in density and regression estimation under dependence
    Boente, G
    Fraiman, R
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1995, 23 (04): : 383 - 397
  • [22] SEMILINEAR STOCHASTIC EQUATIONS WITH BILINEAR FRACTIONAL NOISE
    Garrido-Atienza, Maria J.
    Maslowski, Bohdan
    Snuparkova, Jana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09): : 3075 - 3094
  • [23] Equivalence of Regression Curves
    Dette, Holger
    Moellenhoff, Kathrin
    Volgushev, Stanislav
    Bretz, Frank
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 711 - 729
  • [24] ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC DIFFUSION AND EULER SCHEME EXPERIMENTS
    Genon-Catalot, Valentine
    Laredo, Catherine
    ANNALS OF STATISTICS, 2014, 42 (03) : 1145 - 1165
  • [25] Linear maps preserving equivalence or asymptotic equivalence on Banach space
    Qin, Zijie
    Chen, Lin
    OPEN MATHEMATICS, 2023, 21 (01):
  • [26] Asymptotic Normality for Regression Function Estimate Under Truncation and -Mixing Conditions
    Liang, Han-Ying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (11) : 1999 - 2021
  • [27] RATE OF CONVERGENCE AND ASYMPTOTIC ERROR DISTRIBUTION OF EULER APPROXIMATION SCHEMES FOR FRACTIONAL DIFFUSIONS
    Hu, Yaozhong
    Liu, Yanghui
    Nualart, David
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (02) : 1147 - 1207
  • [28] Revisiting fractional Gaussian noise
    Li, Ming
    Sun, Xichao
    Xiao, Xi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 514 : 56 - 62
  • [29] Asymptotic nonequivalence of density estimation and Gaussian white noise for small densities
    Ray, Kolyan
    Schmidt-Hieber, Johannes
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 2195 - 2208
  • [30] The stochastic wave equation with fractional noise: A random field approach
    Balan, Raluca M.
    Tudor, Ciprian A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (12) : 2468 - 2494