GROUND STATE SOLUTIONS OF NEHARI-POHOZAEV TYPE FOR SCHRODINGER-POISSON PROBLEMS WITH GENERAL POTENTIALS

被引:139
作者
Tang, Xianhua [1 ]
Chen, Sitong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson problem; ground state solution of Nehari-Pohozaev type; the least energy solutions; KLEIN-GORDON-MAXWELL; THOMAS-FERMI; SEMICLASSICAL SOLUTIONS; POSITIVE SOLUTIONS; EQUATIONS; MOLECULES; SYSTEMS; ATOMS; NONLINEARITY; SEQUENCES;
D O I
10.3934/dcds.2017214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to studying the following Schrodinger-Poisson problem {-Delta u + V(x)u + phi u - f(u), x is an element of R-3 -Delta phi + u(2), x is an element of R-3 , where V(x) is weakly differentiable and f E is an element of C(R, R). By introducing some new tricks, we prove the above problem admits a ground state solution of Nehari-Pohozaev type and a least energy solution under mild assumptions on V and f. Our results generalize and improve the ones in [D. Ruiz, J. Funct. Anal. 237 (2006) 655-674], [J.J. Sun, S.W. Ma, J. Differential Equations 260 (2016) 2119-2149] and some related literature.
引用
收藏
页码:4973 / 5002
页数:30
相关论文
共 35 条
[1]   Multibump solutions of nonlinear periodic Schrodinger equations in a degenerate setting [J].
Ackermann, N ;
Weth, T .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (03) :269-298
[2]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[3]  
[Anonymous], 1997, Minimax theorems
[4]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[5]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[6]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[7]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[9]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[10]   Nehari Type Ground State Solutions for Asymptotically Periodic Schrodinger-PoissonSystems [J].
Chen, Sitong ;
Tang, Xianhua .
TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (02) :363-383