Long time behaviour for generalized complex Ginzburg-Landau equation

被引:20
|
作者
Li, Donglong [1 ]
Dai, Zhengde
Liu, Xuhong
机构
[1] Guangxi Inst Technol, Liuzhou 545006, Peoples R China
[2] Yunnan Univ, Kunming 650091, Peoples R China
关键词
generalized complex Ginzburg-Landau equation; global attractor; fractal dimension;
D O I
10.1016/j.jmaa.2006.07.095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the two-dimensional generalized complex Ginzburg-Landau equation (CGL) u(t) = rho u - Delta phi(u) - (1 + i gamma)Delta u - nu Delta(2)u - (1 + i mu)vertical bar u vertical bar(2 sigma) u + alpha lambda(1) . del(vertical bar u vertical bar(2)u) + beta(lambda(2) . del)vertical bar u vertical bar(2) is studied. The existence of global attractor for this equation with periodic boundary condition is established and upper bounds of Hausdorff and fractal dimensions of attractor are obtained. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:934 / 948
页数:15
相关论文
共 50 条
  • [41] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [42] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631
  • [43] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [44] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [45] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [46] Null controllability of the complex Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 649 - 673
  • [47] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46
  • [48] Boundary effects in the complex Ginzburg-Landau equation
    Eguíluz, VM
    Hernández-García, E
    Piro, O
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2209 - 2214
  • [50] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4