Long time behaviour for generalized complex Ginzburg-Landau equation

被引:20
|
作者
Li, Donglong [1 ]
Dai, Zhengde
Liu, Xuhong
机构
[1] Guangxi Inst Technol, Liuzhou 545006, Peoples R China
[2] Yunnan Univ, Kunming 650091, Peoples R China
关键词
generalized complex Ginzburg-Landau equation; global attractor; fractal dimension;
D O I
10.1016/j.jmaa.2006.07.095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the two-dimensional generalized complex Ginzburg-Landau equation (CGL) u(t) = rho u - Delta phi(u) - (1 + i gamma)Delta u - nu Delta(2)u - (1 + i mu)vertical bar u vertical bar(2 sigma) u + alpha lambda(1) . del(vertical bar u vertical bar(2)u) + beta(lambda(2) . del)vertical bar u vertical bar(2) is studied. The existence of global attractor for this equation with periodic boundary condition is established and upper bounds of Hausdorff and fractal dimensions of attractor are obtained. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:934 / 948
页数:15
相关论文
共 50 条
  • [31] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [32] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [33] HOMOCLINIC EXPLOSIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    LUCE, BP
    PHYSICA D, 1995, 84 (3-4): : 553 - 581
  • [34] Controlling turbulence in the complex Ginzburg-Landau equation
    Xiao, JH
    Hu, G
    Yang, JZ
    Gao, JH
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5552 - 5555
  • [35] Inviscid limits of the complex Ginzburg-Landau equation
    Bechouche, P
    Jüngel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) : 201 - 226
  • [36] Taming turbulence in the complex Ginzburg-Landau equation
    Zhan, Meng
    Zou, Wei
    Liu, Xu
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [37] Extensive properties of the complex Ginzburg-Landau equation
    Collet, P
    Eckmann, JP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 699 - 722
  • [38] On the complex Ginzburg-Landau equation with a delayed feedback
    Casal, AC
    Díaz, JI
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (01): : 1 - 17
  • [39] Global attractors for the complex Ginzburg-Landau equation
    Li, Fang
    You, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 14 - 24
  • [40] Transition to antispirals in the complex Ginzburg-Landau equation
    Wang, HL
    Ou-Yang, Q
    CHINESE PHYSICS LETTERS, 2004, 21 (08) : 1437 - 1440