(1+1)-Dimensional Galilean supersymmetry in ultracold quantum gases

被引:9
作者
Lozano, Gustavo S.
Piguet, Oliver
Schaposnik, Fidel A.
Sourrouille, Lucas
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Fed Espirito Santo, Vitoria, ES, Brazil
[3] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 02期
关键词
Chern-Simons matter system - Galilean supersymmetry - Quantum gases;
D O I
10.1103/PhysRevA.75.023608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss a (1+1)-dimensional Galilean invariant model recently introduced in connection with ultracold quantum gases. After showing its relation to a nonrelativistic (2+1) Chern-Simons matter system, we identify the generators of the supersymmetry and its relation with the existence of self-dual equations.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Anyons and chiral solitons on a line [J].
Aglietti, U ;
Griguolo, L ;
Jackiw, R ;
Pi, SY ;
Seminara, D .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4406-4409
[2]   Exact results for the one-dimensional mixed boson-fermion interacting gas [J].
Batchelor, MT ;
Bortz, M ;
Guan, XW ;
Oelkers, N .
PHYSICAL REVIEW A, 2005, 72 (06)
[3]   SUPER-GALILEI INVARIANT FIELD-THEORIES IN 2+1-DIMENSIONS [J].
BERGMAN, O ;
THORN, CB .
PHYSICAL REVIEW D, 1995, 52 (10) :5997-6007
[4]   Integrable supersymmetric fluid mechanics from superstrings [J].
Bergner, Y ;
Jackiw, R .
PHYSICS LETTERS A, 2001, 284 (4-5) :146-151
[5]   NON-RELATIVISTIC SUPERSYMMETRY [J].
CLARK, TE ;
LOVE, ST .
NUCLEAR PHYSICS B, 1984, 231 (01) :91-108
[6]   NONRELATIVISTIC LIMIT OF SUPERSYMMETRIC THEORIES [J].
DEAZCARRAGA, JA ;
GINESTAR, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3500-3508
[7]   ON SCHRODINGER SUPERALGEBRAS [J].
DUVAL, C ;
HORVATHY, PA .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (05) :2516-2538
[8]  
DUVAL C, 1994, NEW DIRECTIONS APPL, P109
[9]   GALILEAN-INVARIANT GAUGE-THEORY [J].
HAGEN, CR .
PHYSICAL REVIEW D, 1985, 31 (04) :848-855
[10]   Supersymmetnic extensions of Schrodinger-invariance [J].
Henkel, Malte ;
Unterberger, Jeremie .
NUCLEAR PHYSICS B, 2006, 746 (03) :155-201