500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics

被引:234
作者
Burla, Maurizio [1 ]
Hoessbacher, Claudia [1 ]
Heni, Wolfgang [1 ]
Haffner, Christian [1 ]
Fedoryshyn, Yuriy [1 ]
Werner, Dominik [1 ]
Watanabe, Tatsuhiko [1 ]
Massler, Hermann [2 ]
Elder, Delwin L. [3 ]
Dalton, Larry R. [3 ]
Leuthold, Juerg [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Electromagnet Fields, Gloriastr 35, CH-8092 Zurich, Switzerland
[2] Fraunhofer IAF, Tullastr 72, D-79108 Freiburg, Germany
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
基金
欧盟地平线“2020”;
关键词
ELECTROOPTIC MODULATOR; FIBEROPTIC LINK; TERAHERTZ; NONLINEARITIES; BANDWIDTH; DESIGN;
D O I
10.1063/1.5086868
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Broadband electro-optic intensity modulators are essential to convert electrical signals to the optical domain. The growing interest in terahertz wireless applications demands modulators with frequency responses to the sub-terahertz range, high power handling, and very low nonlinear distortions, simultaneously. However, a modulator with all those characteristics has not been demonstrated to date. Here, we experimentally demonstrate that plasmonic modulators do not trade-off any performance parameter, featuring-at the same time-a short length of tens of micrometers, record-high flat frequency response beyond 500 GHz, high power handling, and high linearity, and we use them to create a sub-terahertz radio-over-fiber analog optical link. These devices have the potential to become a new tool in the general field of microwave photonics, making the sub-terahertz range accessible to, e.g., 5G wireless communications, antenna remoting, Internet of Things, sensing, and more. (c) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 62 条
[1]  
Ackerman EI, 2016, 2016 IEEE INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP), P265, DOI 10.1109/MWP.2016.7791331
[2]   RF FIBER-OPTIC LINK PERFORMANCE [J].
Ackerman, Edward I. ;
Cox, Charles H., III .
IEEE MICROWAVE MAGAZINE, 2001, 2 (04) :50-58
[3]   42.7 Gbit/s electro-optic modulator in silicon technology [J].
Alloatti, L. ;
Korn, D. ;
Palmer, R. ;
Hillerkuss, D. ;
Li, J. ;
Barklund, A. ;
Dinu, R. ;
Wieland, J. ;
Fournier, M. ;
Fedeli, J. ;
Yu, H. ;
Bogaerts, W. ;
Dumon, P. ;
Baets, R. ;
Koos, C. ;
Freude, W. ;
Leuthold, J. .
OPTICS EXPRESS, 2011, 19 (12) :11841-11851
[4]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[5]  
Baeuerle B., 2018, C LASERS ELECTROOPTI, P1
[6]   Three-Dimensional Phase Modulator at Telecom Wavelength Acting as a Terahertz Detector with an Electro-Optic Bandwidth of 1.25 Terahertz [J].
Benea-Chelmus, Ileana-Cristina ;
Zhu, Tianqi ;
Settembrini, Francesca Fabiana ;
Bonzon, Christopher ;
Mavrona, Elena ;
Elder, Delwin L. ;
Heni, Wolfgang ;
Leuthold, Juerg ;
Dalton, Larry R. ;
Faist, Jerome .
ACS PHOTONICS, 2018, 5 (04) :1398-1403
[7]  
Boyd R. W., 2003, NONLINEAR OPTICS
[8]   Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip [J].
Burla, Maurizio ;
Wang, Xu ;
Li, Ming ;
Chrostowski, Lukas ;
Azana, Jose .
NATURE COMMUNICATIONS, 2016, 7
[9]   Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators [J].
Cai, Wenshan ;
White, Justin S. ;
Brongersma, Mark L. .
NANO LETTERS, 2009, 9 (12) :4403-4411
[10]   MICROWAVE PHOTONICS The programmable processor [J].
Capmany, Jose ;
Gasulla, Ivana ;
Perez, Daniel .
NATURE PHOTONICS, 2016, 10 (01) :6-8